MA717: FUNCTIONAL ANALYSIS

NOTES

Anming Gu

Boston University agu2002@bu.edu

May 16, 2023

Abstract

This is a short reference for functional analysis. The material is from Boston University's PhD class in functional analysis, MA717 taught by Mark Kon during Spring 2023. The course follows *Functional Analysis* by Reed and Simon. Topics include theory of Banach and Hilbert spaces, Fourier analysis, wavelet theory and multiresolution analysis, topological vector spaces, ergodic theory, theory of operators, and spectral theory.

Contents

1 Review

1.1 Sets and Functions

If *X,Y* are sets, then $X \times Y = \{(x, y) | x \in X, y \in Y\}$ is the *Cartesian product* of *X* and *Y*.

Let $f: X \to Y$ be a function. The set of all x to which f can be applied is the *domain* of f, and the set of all *y* s.t. $y = f(x)$ for some $x \in X$ is the *range* of f. f is *surjective* if Range(f) = Y. f is *injective* if $f(x_1) = f(x_2) \implies x_1 = x_2$. *f* is *bijective* if it is surjective and injective.

Let *X,Y* be two sets. A *relation* between *X* and *Y* is a subset $R \subset X \times Y$. If $(x, y) \in R$, we say *xRy* or *x* is related to *y*. A relation $R \subset X \times X$ is an *equivalence relation* if

- (i) $xRx \,\forall x \in X$ (reflexive property);
- (ii) $xRy \implies yRx \,\forall x, y \in X$ (symmetric property);
- (iii) $xRy, yRz \implies xRz \,\forall x, y, z \in X$ (transitive property).

The set of all elements related to a fixed element *x* is an *equivalence class*.

Theorem 1.1. *Let R be an equivalence relation on a set X. Then each element of X belongs to a unique equivalence class.*

1.2 Metric Spaces

Let *X* be a set. Define a *metric* between 2 elements $x, y \in X$ by $\rho(x, y)$ with the following properties

- (i) $\rho(x, y) \geq 0 \,\forall x, y \in X$ with equality iff $x = y$ (positivity);
- (ii) $\rho(x, y) = \rho(y, x) \,\forall x, y \in X$ (symmetry);
- (iii) $\rho(x, y) + \rho(y, z) \ge \rho(x, z) \,\forall x, y, z \in X$ (triangle inequality).

Then (X, ρ) is a *metric space*.

Example 1.2. Let $X = C[0, 1]$ be the continuous functions on [0, 1] and $f_1, f_2 \in X$. Then

$$
\rho_1(f_1, f_2) = \int_0^1 |f_1 - f_2| dx,
$$

\n
$$
\rho_2(f_1, f_2) = \sup_{x \in [0,1]} |f_1(x) - f_2(x)|,
$$

\n
$$
\rho_3(f_1, f_2) = \left(\int_0^1 |f_1 - f_2|^2 dx\right)^{1/2}
$$

are all metrics.

From now on, always assume (X, ρ) , (Y, d) are our canonical metric spaces, unless otherwise stated.

Let $\{x_n\}$ be a sequence. Let $x \in X$. Then $x_n \to x$ $(x_n$ converges to x) if $\rho(x_n, x) \to 0$. If $\forall \varepsilon > 0$, $\exists N$ s.t. $\forall n, m > N$ implies $\rho(x_n, x_m) < \varepsilon$, then $\{x_n\}$ is a *Cauchy* sequence.

Proposition 1.3. *If* $x_n \in X$ *and* $\exists x \in X$ *s.t.* $x_n \to x$ *, then* $\{x_n\}$ *is a Cauchy sequence.*

If every Cauchy sequence in *X* converges to some element of *X*, then *X* is *complete*.

Example 1.4. R is complete with $\rho(x, y) = |x - y|$, but Q is not complete with this metric.

*X*₁ ⊂ *X* is *dense* in *X*, if $\forall x \in X, \forall \varepsilon > 0, \exists x_1 \in X_1 \text{ s.t. } \rho(x, x_1) < \varepsilon$.

Example 1.5. $\mathbb{Q} \subset \mathbb{R}$ is dense in \mathbb{R} .

Let $f: X \to Y$ be a bijective map. Assume that $d(f(x), f(y)) = \rho(x, y) \,\forall x, y \in X$. Then *f* is called an *isometry*.

Theorem 1.6. *If* (X, ρ) *is not a complete metric space, there exists a complete space* (Y, d) *s.t.* (X, ρ) *can be embedded in* (*Y, d*)*. Y is called the* completion *of X.*

Example 1.7. $\mathbb R$ is the completion of $\mathbb Q$.

A function $f: X \to Y$ is continuous at $x \in X$ if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. if $\rho(x_0, x) < \delta$, then $d(f(x_0), f(x)) < \varepsilon$. *f* is *continuous* if *f* is continuous at all $x \in X$.

Theorem 1.8. $f: X \to Y$ is continuous at x iff for any sequence $x_i \to x$ implies $f(x_i) \to f(x)$.

Let $x \in X$. Then $B_{\varepsilon}(x) = \{y \mid \rho(x, y) < \varepsilon\}$ is the *open ball of radius* ε about *y*. A set $\mathcal{O} \subset X$ is *open* if $\forall x \in \mathcal{O}, \exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subset \mathcal{O}$. A *neighborhood N* of *x* is any set which contains an open set that contains *x*.

Let $E \subset X$. Then *x* is a *limit point* of *E* if $\forall r > 0, B_r(x)$ contains points in *E* besides *x* itself. *E* is *closed* if it contains all its limit points.

Given $E \subset X$, we define the *interior* E^o of E to be the largest open set contained in E . We define the *closure E* of *E* to be the smallest closed set containing *E*. Then the *boundary* of *E* is the difference between the two sets: $\partial E = \overline{E} \setminus E^o$. $x \in X$ is a *point of closure* of a set E if $x \in \overline{E}$.

Proposition 1.9. *Every point on ∂*O *is a limit point of* O*.*

Theorem 1.10. *A set* $O \subset X$ *is open iff* O^c *is closed.*

Theorem 1.11. $f: X \to Y$ *is continuous iff for all open* $\mathcal{O} \subset Y$ *, f*⁻¹(\mathcal{O}) *is open.*¹

1.3 Vector Spaces and Normed Linear Spaces

Recall a *vector space* (v.s.) *V* is a set that is closed under addition and scalar multiplication that satisfies the following properties:

- (a) $\alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$ (distributive);
- (b) $v_1 + v_2 = v_2 + v_1$ (commutative);
- (c) $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$ (associative);
- (d) $\alpha_1(\alpha_2 v) = (\alpha_1 \alpha_2)v;$
- (e) $\exists! v = 0 \text{ s.t. } 0 + v_1 = v_1 \ \forall v_1 \in V;$

¹Note that f^{-1} is the pre-image of f , not the inverse function.

- (f) $(\alpha_1 + \alpha_2)v = \alpha_1v + \alpha_2v;$
- $(g) 1 \cdot v = v \ \forall v \in V$
- (h) $\forall v, \exists w = -v \text{ s.t. } x + v = 0.$

A v.s. *V* is a *normed linear space* (n.l.s) if each $v \in V$ is assigned a length $||v|| \ge 0$ s.t.

- (a) $||v|| = 0$ iff $v = 0$;
- (b) $\|\alpha v\| = |\alpha| \|v\| \ \forall \alpha \in \mathbb{R}, v \in V;$
- (c) $||v_1 + v_2|| \le ||v_1|| + ||v_2||$.

Remark 1.12. A n.l.s. is also a metric space if we define $\rho(v_1, v_2) = ||v_1 - v_2||$.

Let V_1, V_2 be n.l.s. Let $T: V_1 \to V_2$. Then *T* is a *bounded linear transformation* (BLT) if

- (i) $T(v_1 + v_2) = Tv_1 + Tv_2;$
- (ii) $T(\alpha v_1) = \alpha T v_1;$
- (iii) $||Tv_1|| < C||v_1|| \forall v_1 \in V$ for some *C*.

The smallest *C* which makes (iii) true is called ∥*T*∥, the norm of *T*.

Theorem 1.13. Let $T: V_1 \to V_2$ be a linear transformation. Then T is bounded iff T is continuous.

1.4 Countable Sets

A set *A* is *countable* if there exists a one-to-one mapping between *A* and N. If *A* is infinite, and *A* is not countable, then it is *uncountable*.

Example 1.14. $\mathbb{N}, \mathbb{Q}, \mathbb{N}^{100}$ are countable, \mathbb{R} is uncountable.

1.5 Measure Theory on R

Motivation: we want to extend the sets that are measurable, *i.e.*, sets that have definite size, from just the intervals on $\mathbb R$ to a larger class of subsets of $\mathbb R$.

A family F of subsets of a set *S* is a *σ*-algebra if it contains *S*, it is closed under complements, and it is closed under countable unions. The *Borel sets* β on $\mathbb R$ is the smallest σ -algebra containing all open intervals in $\mathbb R$.

Let $\mathcal J$ be the collection of all countable infinite unions of disjoint open intervals in R. For $E \in \mathcal J$, write $E = \cup (a_i, b_i)$, where the intervals are assumed to be disjoint. Then the measure of *E* is $\mu(E) = \sum (b_i - a_i)$. For $B \in \mathcal{B}$, define

$$
\mu(B) = \inf_{E \in \mathcal{J}: E \supseteq B} \mu(E).
$$

The measure $\mu(B)$ is the *Lebesque measure* of *B*.

Theorem 1.15. *Let µ be any nonnegative function defined on a σ-algebra* F*. µ is a* measure *if it has the following properties:*

- *(i)* $\mu(\emptyset) = 0$
- *(ii) If* $\{A_n\} \subset \mathcal{F}$ *, and all* A_n *are disjoint, then* $\mu(\cup A_n) = \sum \mu(A_n)$ *.*

 $f: \mathbb{R} \to \mathbb{R}$ is a *Borel function* if $f^{-1}((a, b)) \in \mathcal{B}$ for any interval $(a, b) \subset \mathbb{R}$.

Remark 1.16. Borel functions will be the largest class of functions on which we will be able to define an integral.

Proposition 1.17. *f is a Borel function iff* $f^{-1}(B) \in \mathcal{B} \ \forall B \in \mathcal{B}$ *.*

Theorem 1.18 (Properties of Borel functions)**.** *We have the following:*

- *(a) If* f, g are Borel measurable, $\lambda \in \mathbb{R}$, then so are $f + g$, fg , $\max\{f, g\}$, $\min\{f, g\}$, λf .
- *(b)* If $\{f_n\}$ *is a sequence of Borel measurable functions, and* $f_n \to f$ *, then f is Borel measurable.*

First, assume that f is nonnegative on [a, b]. Fix $n \in \mathbb{N}$. Then for $0 \leq m < \infty$, divide the *y*-axis into intervals $(\frac{m}{n}, \frac{m+1}{n})$. Then we can approximate the integral of *f*, and define the *Lebesgue integral* of *f* as

$$
\int_a^b f = \lim_{n \to \infty} \sum_{m=0}^{\infty} \frac{m}{n} \cdot \mu \left(f^{-1} \left(\frac{m}{n}, \frac{m+1}{n} \right) \right).
$$

We will omit the bounds of integration if they are obvious. If *f* is not positive, then write $f = f_{+} - f_{-}$, where $f_{+} = \max\{f, 0\}, f_{-} = -\min\{f, 0\}.$ Now if $\int |f| < \infty$, define

$$
\int f = \int f_+ - \int f_-.
$$

Define $L^1(a, b) = \{f \mid \int_a^b |f| < \infty \}.$

Theorem 1.19 (Properties of L^1 integrals). Let $a, b \in \mathbb{R}$ (may be infinite).

- (*a*) *If* $f, g \in L^1(a, b)$ *, then so are* $f + g, \lambda f$ *if* $\lambda \in \mathbb{R}$ *. We have the following:*
- (*b*) *If f* ∈ *L*¹(*a, b*) *and* $|g| ≤ |f|$ *, then* $g ∈ L$ ¹(*a, b*)*.*
- (*c*) $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$.
- $(d) | \int_a^b f | \leq \int_a^b |f|$.
- (e) $f, g \in L^1(a, b), f \leq g \implies \int_a^b f \leq \int_a^b g$.

(f)
$$
|\int_a^b f| \le (b-a) \sup_{x \in (a,b)} |f(x)|
$$
.

Theorem 1.20 (Monotone convergence theorem). Let $f_n(x) \geq 0$ be measurable and $f_n(x) \to f(x) \forall x$. Assume $f_{n+1}(x) \ge f_n(x)$ $\forall x, n \in \mathbb{N}$. Then if $\int f_n \le C \ \forall n \in \mathbb{N}$, where C is a constant, we have $f \in L^1$,

$$
\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f = \int f,
$$

$$
\int |f_n - f| \to 0.
$$

and

Theorem 1.21 (Dominated convergence theorem). Suppose $|f_n(x)| \leq F(x)$ and $F \in L^1$. Then if $f_n(x) \to$ *f*(*x*) ∀*x,* we have $f \in L^1$,

f,

$$
and
$$

$$
\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f = \int
$$

$$
\int |f_n - f| \to 0.
$$

A condition *C* holds *almost everywhere* (a.e.) on R if the set of numbers where *C* is false has measure 0. Functions *f, g* are *equivalent* ($f \equiv g$) if they differ on a set of measure 0.

Remark 1.22. We consider functions which are equivalent to be the same element of $L^1(a, b)$.

Notice that $L^1(a, b)$ is a metric space with metric

$$
\rho(f_1, f_2) = \int_a^b |f_1 - f_2| = ||f_1 - f_2||_1.
$$

Theorem 1.23 (Riesz-Fisher theorem). $L^1(a, b)$ *is complete.*

Proposition 1.24. $C[a, b]$ *is a dense subset of* $L^1[a, b]$ *(in the above metric).*

Recall $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\},\$ where $i = \sqrt{-1}$. Let $\alpha = a + bi \in \mathbb{C}$, define the *norm* $|\alpha|$ as $\sqrt{a^2 + b^2}$. We define the *complex conjugate* of α as $\overline{\alpha} = a - bi$.

Now consider $f : \mathbb{R} \to \mathbb{C}$. Then we can write $f = f_1 + if_2$, where $f_1, f_2 : \mathbb{R} \to \mathbb{R}$. Let $|f(x)| = \sqrt{f_1^2(x) + f_2^2(x)}$. Then we have $||f||_1 = \int |f|$ and $\int f = \int f_1 + i \int f_2$.

1.6 General Measure Theory on R

Let $\alpha : \mathbb{R} \to \mathbb{R}$ be an increasing function (with possible jumps). For an interval [a, b], define the measure $\mu_{\alpha}([a,b]) = \alpha(b^+) - \alpha(a^-)$. We can show that μ_{α} extends uniquely from intervals [*a, b*] to a measure on *B*. The measure μ_{α} is called the *Stieltjes measure* corresponding to the function α . A measure on Borel sets in R is called a *Borel measure*.

We will use the notation

$$
\int f d\mu_{\alpha} = \int f(x) d\alpha(x).
$$

For a function $f : \mathbb{R} \to \mathbb{R}$, we define $f \in L^1(a, b; \mu_\alpha)$ if $\int |f| d\mu_\alpha < \infty$.

In general, if we can write

$$
\int f d\mu_{\alpha} = \int f(x)g(x)dx
$$

for some $g(x)$, then μ_{α} is called *absolutely continuous* w.r.t. Lebesgue measure.

Example 1.25. Let $\alpha(x) = \begin{cases} 1, & x \geq 0; \\ 0, & x \geq 0. \end{cases}$ $0, \quad x \ge 0;$ Then $\mu_{\alpha}([a, b]) = \alpha(b^{+}) - \alpha(a^{-}) = \begin{cases} 1 & \text{if } 0 \in [a, b]; \\ 0 & \text{if } 0 \notin [a, b], \end{cases}$ 0 if $0 \notin [a, b]$, *i.e.*, $\{0\}$ has measure 1, and all else has measure 0.

If a measure μ on R has a *point mass* at a point *x* if $\mu({x}) > 0$. If the measure μ_{α} is concentrated on a countable or finite set of points, μ_{α} is called a *point measure*.

1.7 The Cantor Set and the Cantor Function

Consider the set *S* on $[0,1]$ such that $S = \left(\frac{1}{3}, \frac{2}{3}\right) \cup \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right) \cup \left(\frac{1}{27}, \frac{2}{27}\right) \cup \cdots$, *i.e.*, at each stage take the middle third of each interval that's not yet included and include it in the list. Note that $\mu(S) = 1$. Then define $C = [0, 1] \setminus S$. Then *C* is the *Cantor set*. Note that $\mu(C) = 1 - 1 = 0$.

Now define the *Cantor function* $\alpha(x)$ on [0, 1] as follows. Start with $\alpha(0) = 0$ and $\alpha(1) = 1$, then fill in values on the set *S* as follows:

$$
\alpha(x) = \begin{cases} \frac{1}{2}, & x \in \left(\frac{1}{3}, \frac{2}{3}\right) \\ \frac{1}{4}, & x \in \left(\frac{1}{9}, \frac{2}{9}\right) \\ \frac{3}{4}, & x \in \left(\frac{7}{9}, \frac{8}{9}\right) \\ \text{etc.} \end{cases}
$$

We still need to define $\alpha(x)$ on *C*. We can extend $\alpha(x)$ uniquely to a continuous function on [0, 1] by filling in values on *C* using continuity. That is, for $x \in C$, $\alpha(x) = \lim_{y \uparrow x} \alpha(y)$, where $y \uparrow x$ are chosen so that $y \in S$.

Lemma 1.26. *The function* $\alpha(x)$ *is continuous.*

Remark 1.27. $\alpha(x)$ is constant on all intervals forming *S*, meaning $\mu_{\alpha}(E) = 0 \ \forall E \subset S$. Hence, μ_{α} is concentrated on *C*, a set of Lebesgue measure 0! This means that $\mu_{\alpha}(S) = 0$ while $\mu_{\ell}(C) = 0$.

We state that μ_{α} is *singular* w.r.t. Lebesgue measure μ_{ℓ} ($\mu_{\alpha} \perp \mu_{\ell}$) on [a, b] because there are two sets *S*, *C* with $[a, b] = S \cup C$ and $\mu_{\alpha}(S) = 0$ and $\mu_{\ell}(C) = 0$, *i.e.*, two measure have support in entirely different places.

A function $\alpha : \mathbb{R} \to \mathbb{R}$ is *right continuous* if its value at any point is the limit of its values to the right, *i.e.*, $\alpha(x) = \lim_{y \downarrow x} \alpha(y)$, where the limit $y \downarrow x$ indicates that *y* approaches *x* from the right.

Proposition 1.28. *There is a one-to-one correspondence between right continuous functions* $\alpha(x)$ *on the interval* (a, b) *and Borel measure* $\mu(x)$ *.*

A Stieltjes measure μ_{α} arising from a continuous function $\alpha(x)$ is called a *continuous measure*. A continuous measure μ_{α} which is singular w.r.t. Lebesgue measure is called a *singular continuous measure*.

Proposition 1.29. *A measure* μ *is continuous iff it has no point masses.*

1.8 General Measures on Borel Sets

Let μ be a measure on \mathcal{B} in R. Assume also that $\forall B \in \mathcal{B}$,

$$
\mu(B) = \inf_{\substack{\mathcal{O} \supset B \\ \mathcal{O} \text{ open}}} {\{\mu(\mathcal{O})\}}
$$
\n(1)

$$
= \sup_{\substack{C \subset B \\ C \text{ closed, bdd}}} {\{\mu(C)\}},
$$
 (2)

then *µ* is called a *Borel measure*. If Property [1](#page-5-3) holds for all Borel sets, then *µ* is called *outer regular*; if Property [2](#page-5-4) holds for all Borel sets, then *µ* is called *inner regular*.

Theorem 1.30. *Any Borel measure* μ *can be written as a sum* $\mu = \mu_p + \mu_c$ *, where* μ_c *is a continuous measure and µ^p is a pure point measure.*

There is another way to break down all Borel measure on R.

Theorem 1.31 (Lebesgue decomposition theorem). Any Borel measure μ on \mathbb{R} can be uniquely written as *a sum* $\mu = \mu_{ac} + \mu_s$, where μ_{ac} *is absolutely continuous w.r.t.* Lebesgue measure and μ_s *is singular w.r.t. Lebesgue measure.*

Theorem 1.32. Any Borel measure μ on \mathbb{R} can be written as $\mu = \mu_p + \mu_{ac} + \mu_{cs}$, where μ_p is a pure point, *µac is absolutely continuous w.r.t. Lebesgue measure, and µcs is singular w.r.t. Lebesgue measure.*

Note that *cs* stands for *continuous singular*.

1.9 Abstract Measure Theory

Let (M, \mathcal{F}, μ) be our canonical measure space unless otherwise stated.

A set $A \in \mathcal{F}$ is called *measurable*. A measure μ is a σ -*finite* measure on M if M can be written as a countable union of sets A_i s.t. $\mu(A_i) < \infty$ $\forall i$.

Remark 1.33. We will often assume that our measures are *σ*-finite; otherwise things can get too large.

Let $f: M \to \mathbb{R}$. Then we say f is *measurable* if $f^{-1}((a, b))$ is a measurable set for any interval (a, b) .

For a measure space (M, \mathcal{A}, μ) and function $f : M \to \mathbb{R}$ (where f is nonnegative), we define the integral identical in form to the Lebesgue integral on R:

$$
\int f d\mu = \lim_{n \to \infty} \sum_{m} \frac{m}{n} \cdot \mu \left(f^{-1} \left(\frac{m}{n}, \frac{m+1}{n} \right) \right).
$$

Then to extend this for general real functions, again define $f = f_{+} - f_{-}$. We can also extend integration to complex functions $f : M \to \mathbb{C}$ by writing $f = f_1 + if_2$ for $f_1, f_2 : M \to \mathbb{R}$. We get exact analogues of the monotone convergence theorem, the dominated convergence theorem, and the Riesz-Fisher theorem.

Let (M, \mathcal{A}_M, μ) , (N, \mathcal{A}_N, ν) be measure spaces. Let $M \times N$ be the product space. Define the *product σ*-*algebra* $A_{M \times N}$ to be the smallest *σ*-algebra on $M \times N$ that contains all product sets of the form $A \times B$ s.t. $A \in \mathcal{A}_M, B \in \mathcal{A}_N$. Sets of this form are called *measurable rectangles*.

Theorem 1.34. *If the above two measure* μ, ν *are σ*-finite, there exists a unique measure $\mu \times \nu$ *on* $\mathcal{A}_{M \times N}$ *with the property* $(\mu \times \nu)(A \times B) = \mu(A)\nu(B)$ $\forall A \in A_M, B \in A_N$. This measure is the product measure of *µ, ν.*

Theorem 1.35 (Fubini's theorem). Assume (M, \mathcal{A}_M, μ) , (N, \mathcal{A}_N, ν) are σ -finite. If $f(x, y)$ is a measurable *function on* $M \times N$ *, we have*

$$
\int_M \left(\int_N f(x, y) \, d\nu(y) \right) d\mu(x) = \int_{M \times N} f(x, y) \, d(\mu \times \nu) = \int_N \left(\int_M f(x, y) \, d\mu(x) \right) d\nu(y),
$$

if any of the three integrals converges absolutely.

Two measures μ, ν on a measurable space (M, \mathcal{F}) are *mutually singular* if $\exists A \in \mathcal{A}$ s.t. $\mu(A) = 0$ and $\nu(A^c) = 0$. *ν* is *absolutely continuous* w.r.t. μ ($\nu \ll \mu$) if $\forall A \in \mathcal{F}$, $\nu(A) = 0$ whenever $\mu(A) = 0$.

Theorem 1.36 (Radon-Nikodym theorem). $\nu \ll \mu$ *on* (M, \mathcal{F}) *iff* $\nu(A) = \int_A f d\mu$ *for some measurable f and* $\forall A \in \mathcal{F}$ *. We call the function* $f = \frac{d\nu}{d\mu}$ *the* Radon-Nikodym derivative *of ν w.r.t.* μ *.*

Theorem 1.37 (Lebesgue decomposition theorem)**.** *Given two fixed measure µ, ν, there exists a unique decomposition* $\nu = \nu_{ac} + \nu_s$ *s.t.* $\nu_{ac} \ll \mu$ *and* $\nu_s \perp \mu$.

1.10 Inner Product Spaces

Let *V* be a complex v.s. Assume that $\forall v, w \in V$, there exists a number $\langle v, w \rangle \in \mathbb{C}$, called an *inner product* s.t.

(a) $\langle v, v \rangle \geq 0$ with equality iff $x = 0$;

- (b) $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$;
- (c) $\langle u, \alpha v \rangle = \alpha \langle u, v \rangle$;
- (d) $\langle u, v \rangle = \overline{\langle v, u \rangle}$.

Then *V* is an *inner product space* (i.p.s.).

Remark 1.38. We also have $\langle \alpha u, v \rangle = \overline{\alpha} \langle u, v \rangle$.

Example 1.39. Let $V = C[0, 1]$. Then if $f_1, f_2 \in V$, define $\langle f_1, f_2 \rangle = \int \overline{f_1} f_2$.

If *V* is an i.p.s., $x, y \in V$ are *orthogonal* if $\langle x, y \rangle = 0$. If $\{v_i\}_{i=1}^k \subset V$ (*k* can be ∞) is a set of orthogonal vectors s.t. $\langle v_i, v_i \rangle = 1$ $\forall i$, then $\{v_i\}$ is called an *orthonormal set* of vectors. For a vector $v \in V$, define $||v|| = \sqrt{\langle v, v \rangle}.$

Theorem 1.40 (Pythagorean theorem). Let $\{x_i\}_{i=1}^k$ be an orthonormal set $(k < \infty)$. Then $\forall x \in V$,

$$
||x||^2 = \sum_i ||\langle x, x_i \rangle|^2 + \left||x - \sum_i \langle x_i, x \rangle x_i \right||^2.
$$

Corollary 1.41 (Bessel's inequality). Let $\{x_i\}_{i=1}^k$ be an orthonormal set $(k < \infty)$. Then $\forall x \in V$,

$$
||x||^2 \ge \sum_i |\langle x, x_i \rangle|^2.
$$

Corollary 1.42 (Schwarz's inequality). $|\langle x, y \rangle| \le ||x|| ||y|| \; \forall x, y \in V$.

Theorem 1.43 (Metric induced by a norm). If *V is an i.p.s. and* $||x|| = \sqrt{\langle x, x \rangle}$, then *V* with norm $||x||$ *satisfies the properties of being a n.l.s. Thus, we also have metric* $\rho(x, y) = ||x - y||$ *.*

2 Hilbert Spaces

If i.p.s. *V* is complete, then *V* is called a *Hilbert space*. Our canonical Hilbert space will be H.

Example 2.1. $L^2[0,1] =$ functions $f: [0,1] \to \mathbb{C}$ s.t. $\int |f|^2 < \infty$ with inner product $\langle f_1, f_2 \rangle = \int \overline{f_1} f_2$ is a Hilbert space.

Example 2.2. ℓ^2 = sequences $\{x_i\}$ of complex numbers s.t. $\sum |x_i|^2 < \infty$ with inner product $\langle \{x_i\}, \{y_i\} \rangle =$ $\sum \overline{x_i} y_i$ is a Hilbert space.

Let *V* be a Hilbert space. and *M* be a closed subspace of *V*. Define $M^{\perp} = \{x \in V \mid x \perp v \,\forall v \in M\}$. Then M^{\perp} is a closed subspace of *V*.

Theorem 2.3 (Projection theorem). *Every vector* $v \in \mathcal{H}$ *can be uniquely written as* $v = x + y$ *, where* $x \in M$ *and* $y \in M^{\perp}$ *.*

Let $T : \mathcal{H} \to \mathbb{C}$ be linear and continuous. Then *T* is a *continuous linear functional*. The collection \mathcal{H}^* of all such *T*'s is the *dual space* of H.

Theorem 2.4 (Riesz representation theorem). Let $T : \mathcal{H} \to \mathbb{C}$ be a continuous linear functional. Then $\exists! y \in \mathcal{H} \text{ s.t. } Tx = \langle y, x \rangle \ \forall x \in \mathcal{H} \text{.} \text{ Conversely, } \forall y \in \mathcal{H} \text{, if we define } Tx = \langle y, x \rangle \text{, then } T \text{ is a continuous.}$ *linear functional.*

Recall that a collection $S = \{x_i\} \subset \mathcal{H}$ is orthonormal if the x_i are orthogonal to each other and have length 1. If *S* cannot be extended to a larger orthonormal set, then *S* is an *orthonormal basis* for H.

Let $\{x_{\alpha}\}_{{\alpha}\in A}$ be a set. Note that if *A* is uncountable, a sum $\sum c_{\alpha}x_{\alpha}$ is defined (finite) iff at most a countable number of terms in the sum are non-zero. We say that a countable sum $\sum c_i x_i = y$ iff $\lim_{n\to\infty} ||\sum_{i=1}^n c_i x_i$ $y\| = 0.$

Remark 2.5. Now we can continue to talk about Hilbert spaces with uncountable bases.

Theorem 2.6. Let $\{x_\alpha\}_{\alpha \in A}$ be an orthonormal basis (that could be uncountable). Then $\forall y \in \mathcal{H}$, $y = \sum c_\alpha x_\alpha$, where $c_{\alpha} = \langle x_{\alpha}, y \rangle$. Further, $||y||^2 = \sum |c_{\alpha}|^2$. Also, if $\sum |c_{\alpha}|^2 < \infty$ for some collection $\{c_{\alpha}\}_{{\alpha} \in A}$ of constants, *then* $\sum c_{\alpha} x_{\alpha}$ *converges to an element of* H.

Remark 2.7. Note that Hilbert spaces generalize our intuition of finite-dimensional vector spaces from linear algebra.

Let $\{u_i\}$ be linearly independent vectors. We can construct orthonormal vectors $\{v_i\}$ which are special combinations of $\{u_i\}$. Define w_i, v_i by

$$
w_1 = u_1
$$

\n
$$
w_2 = u_2 - \langle v_1, u_2 \rangle v_1
$$

\n
$$
w_3 = u_3 - \langle v_1, u_3 \rangle v_1 - \langle v_2, u_3 \rangle v_2
$$

\n
$$
v_1 = \frac{w_1}{|w_2|}
$$

\n
$$
v_2 = \frac{w_2}{|w_2|}
$$

\n
$$
v_3 = \frac{w_2}{|w_3|}
$$

\n
$$
\vdots
$$

This is the *Gram-Schmidt procedure*, which is entirely analogous to the standard procedure from linear algebra.

Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces. Let $U : \mathcal{H}_1 \to \mathcal{H}_2$ be a linear map which is

- (i) inner product preserving, *i.e.*, $\langle Ux, Uy \rangle = \langle x, y \rangle$;
- (ii) onto, *i.e.*, the range of *U* is \mathcal{H}_2 ;
- (iii) one-to-one, *i.e.*, $v_1 \neq v_2 \implies Uv_1 \neq Uv_2$.

Then *U* is called a *unitary map*. If there exists a unitary map *U* from \mathcal{H}_1 to \mathcal{H}_2 , then \mathcal{H}_1 and \mathcal{H}_2 are *isomorphic* ($\mathcal{H}_1 \sim \mathcal{H}_2$). Alternatively, they can also be called *unitarily equivalent*.

Let (X, ρ) be a metric space. *X* is *separable* if it has a dense subset *S* which is countable.

Theorem 2.8. *A Hilbert space* H *is separable iff there exists an orthonormal basis* $\{x_\alpha\}_{\alpha \in A}$ *which is countable.*

Remark 2.9. We will mainly care about separable Hilbert spaces.

Theorem 2.10. *Let* H *be a Hilbert space. We have the following:*

- *(a) If H has a finite orthonormal basis* $\{x_i\}_{i=1}^n$ *, then* $H \sim \mathbb{C}^n$ *.*
- *(b) If H has a countable orthonormal basis* $\{x_i\}_{i=1}^{\infty}$ *, then* $H \sim \ell^2$ *.*

2.1 Fourier Series

Let *f* be integrable on $[-\pi, \pi]$. We can show that if $\phi_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$, then $\{\phi_n(x)\}_{n=-\infty}^{\infty}$ is orthonormal. Therefore, if $f \in L^2[-\pi, \pi]$, then

$$
f(x) = \frac{1}{\sqrt{2\pi}} \sum d_n e^{inx},
$$

where $d_n = \langle \phi_n, f \rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx$. Alternatively, we can write

$$
f(x) = \sum c_n e^{inx},
$$

where $c_n = \frac{d_n}{\sqrt{2a}}$ $\frac{\pi}{2\pi}$.

Remark 2.11. We call $f_M(x) = \sum_{n=-M}^{M} c_n e^{inx}$. Then $\lim_{M \to \infty} f_M(x) = f(x)$ in L^2 .

Theorem 2.12. If $f \in L^2[-\pi,\pi]$, then $f_M \to_{M \to \infty} f$ in L^2 norm, i.e., $||f_M - f||_2^2 = \int |f_M - f|^2 \xrightarrow{M \to \infty} 0$. **Remark 2.13.** $L^2[-\pi,\pi]$ is a Hilbert space.

We can also use Euler's formula to show that the functions consisting of

$$
\frac{1}{\sqrt{2\pi}}, \left\{ \frac{1}{\sqrt{\pi}} \cos nx \right\}_{n=1}^{\infty}, \left\{ \frac{1}{\sqrt{\pi}} \sin nx \right\}_{n=1}^{\infty}
$$

equivalently forms an orthonormal basis. Similar analysis then gives

$$
f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,
$$

where $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$.

Remark 2.14. In 1966, Carleson showed that convergence of Fourier series occurs pointwise a.e.

2.2 Applications in Quantum Mechanics

There are two classical views of quantum mechanics: Heisenberg's and Schrodinger's.

Heisenberg viewed all possible states of a system forming a vector space, where all states are infinite vectors in a Hilbert space V_H . Suppose $v = (x_1, x_2, \dots) \in V_H$. Then $|x_i|^2$ represents the probability that particles are in a particular configuration, with each i representing a different configuration. For example, if v_1, v_2 are two possible states, then $\frac{1}{2}v_1 + \frac{1}{2}v_2$ is another possible state. Then the time evolution of $v = v(t)$ is given by a matrix equation

$$
\frac{dv}{dt} = Hv,
$$

where *H* is an infinite matrix.

Now let V_S be the set of all functions on some set. For the sake of simplicity, assume $V_S = \{ \psi \mid \psi \}$. $[-\pi, \pi]$ s.t. $\int |\phi|^2 < \infty$. We interpret $|\psi(x)|^2 \Delta x$ as the probability a particle is in the interval Δx . Actually, $\psi = \psi(x, t)$ satisfies a partial differential equation for time evolution:

$$
-i\frac{\partial \psi(x,t)}{\partial t} = \frac{\partial^2 \psi(x,t)}{\partial x^2}.
$$

Equivalently, we can define for a fixed t , $\Psi(t) = \psi(x, t) \in L^2(\mathbb{R})$.

Schrodinger showed that the two views of quantum mechanics were unitarily equivalent, i.e. there exists a bijective unitary operator $U: V_S \to V_H$ such that $U\Psi = v$.

3 Banach Spaces

Let (X, μ) be a measure space. Given a function $f : X \to \mathbb{R}$, we define the *essential supremum* of f (ess sup f) to be the maximum value of $|f(x)|$, except for sets of measure 0. Precisely,

ess sup
$$
f = \inf\{a \mid |f(x)| \le a \,\forall x \text{ a.e.}\}
$$

If a n.l.s. *V* is complete, then *V* is called a *Banach space*.

Example 3.1. Let $1 \leq p < \infty$, and (X, μ) be a measure space. Let $L^p = \{f : X \to \mathbb{C} \mid \int |f|^p d\mu < \infty\}$. This is a n.l.s.

Example 3.2. If H is a Hilbert space, then H can be considered a Banach space using the norm $||x|| = \sqrt{\langle x, x \rangle}$.

Theorem 3.3 (Riesz-Fisher theorem). $L^p(X)$ *is complete.*

Theorem 3.4 (Holder's inequality). Let $1 \leq p \leq \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$. Let $f \in L^p(X)$, $g \in L^q(X)$. Then $fg \in L^1(X)$, and $||fg||_1 \leq ||f||_p ||g||_q$.

Corollary 3.5. *If* $f \in L^p(X)$ *for* $1 \leq p \leq \infty$ *, then if* $\frac{1}{p} + \frac{1}{q} = 1$ *,* $||f||_p = \sup{||fg||_1 | ||g||_q} = 1$ *}*.

Corollary 3.6 (Triangle inequality). *If* $1 \leq p \leq \infty$ *, we have* $||f + g||_p \leq ||f||_p + ||g||_p$ *.*

Define $L^p(X)^*$ to be the continuous linear functionals on $L^p(X)$.

Theorem 3.7 (Riesz representation theorem). Let (X, μ) be a *σ*-finite measure space. Let $1 \leq p < \infty$. Let $L \in L^p(X)^*$ *. Then* $\exists! g \in L^q(X)$ *s.t.*

$$
L(f) = \int f(x)g(x) d\mu(x),
$$

and furthermore, $||g||_q = ||L||$.

3.1 Dual Spaces

Let *X* be a n.l.s. Let $\{x_n\} \subset X$ be a sequence. Then $\{x_n\}$ is *summable* if $\lim_{N \to \infty} \sum_{n=1}^{N} x_n = \sum x_n$ exists. ${x_n}$ is *absolutely summable* if $\sum ||x_n||$ converges.

Theorem 3.8. *X is complete iff every absolutely summable sequence is summable.*

Given a Banach space *X*, the dual space X^* is also a Banach space. To see this, note that $X^* = \mathcal{L}(X, \mathbb{C})$, which is a Banach space.

Example 3.9. Let (M, μ) be a measure space. Then $L^p(M)$ be the functions f on M s.t. $||f||_p = (\int |f|^p)^{1/p}$ ∞ is a Banach space under the norm $||f||_p$ for $1 \leq p < \infty$. Then ∃ $g \in L^q(M)$ where $1/q + 1/p = 1$ s.t. $Lf = \int_X \overline{g} f d\mu$, where $||L|| = ||g||_q$. Thus, $L \in L^p(M)^* \longleftrightarrow g \in L^q(M)$. Let this correspondence *A*. It is easy to check that *A* is linear and bijective. Also, the operator norm $||L|| = ||g||_q$, so *L* is isometric. Hence, $L^p(X)^*$ and $L^q(X)$ are the same Banach space under this correspondence.

Two n.l.s. X, Y are *isomorphic* if there exists a linear map $A: X \to Y$ that is bijective and isometric. This means that *X, Y* are effectively the same space.

Example 3.10. Let H be a Hilbert space. We have shown that if $L \in \mathcal{H}^*$, then $\exists y \in \mathcal{H}$ s.t. $Lx = \langle y, x \rangle \ \forall x$. Thus, we have an analogous correspondence *M* where $L \in \mathcal{H}^* \longleftrightarrow y \in \mathcal{H}$. *M* forms a bijection between $\mathcal{H}^*, \mathcal{H}, \|L\|_{\mathcal{H}^*} = \|y\|_{\mathcal{H}},$ so M is an isomorphism. Hence, $\mathcal{H}^*, \mathcal{H}$ are isomorphic.

Claim 3.11. Let $\ell_1 = \{ \{a_i\} \mid \sum |a_i|^1 < \infty \}$ and $\ell_\infty = \{ \lambda = \{ \lambda_i \} \mid ||\lambda||_\infty = \sup |\lambda_i| < \infty \}$. Then $\ell_1^* = \ell_\infty$.

Let *X* be a Banach space. Then X^{**} is the space of linear functionals on X^* , the double dual space.

Theorem 3.12. Let *X* be a Banach space and X^* be its dual space. Fix $x \in X$, and define the following linear functional \tilde{x} defined on $\lambda \in X^*$ by $\tilde{x}(\lambda) = \lambda(x)$. Define the map $J: X \to X^{**}$ by $Jx = \tilde{x}$. Then J is *an isomorphism of X onto some subspace of* X^{**} *(possibly all of* X^{**} *).*

If *J* maps *X* onto all of X^{**} , we say *X* is reflexive.

3.2 The Hahn-Banach Theorem

Let *S* be a set. A relation \prec on *S* is a *partial order* if:

(a)
$$
x \prec x \forall x \in S
$$

- (b) $x \prec y, y \prec z \implies x \prec z$
- (c) $x \prec y, y \prec x \implies x = y$.

If $\forall x, y \in S$, $x \prec y$ or $y \prec x$, *s* is *linearly ordered*. Suppose $X \subset S$, and $p \in S$ satisfies the condition that $x \prec y \ \forall x \in X$. Then we say *p* is an *upper bound* for *X*. Suppose that $m \in X$, and $\exists x \neq m$ s.t. $m \prec x$, then we say that *m* is a *maximal element* in *S*.

Lemma 3.13 (Zorn's lemma). Let *S* be a set with a partial order, s.t. every linearly ordered subset $X \subset S$ *has an upper bound p. Then X has a maximal element in S.*

Theorem 3.14 (Hahn-Banach theorem). Let X be a vector space over the real numbers. Let $p: X \to \mathbb{R}$ be a function s.t. $\forall \alpha \in [0,1], x \in X$, $p(\alpha x + (1-\alpha)y) \leq \alpha p(x) + (1-\alpha)p(y)$. Let λ be a linear functional *defined on subspace* $Y \subset X$ *s.t.* $\lambda(x) \leq p(x)$ $\forall x \in Y$. Then there is a linear functional $\Lambda : X \to \mathbb{R}$ *s.t.* $\Lambda(x) = \lambda(x) \,\forall x \in Y \text{ and } \Lambda(x) \leq p(x) \,\forall x \in X.$

Corollary 3.15. Let *X* be a n.l.s. Let $Y \subset X$ be a subspace, and λ be a bounded linear functional on Y. *Then there exists a bounded linear functional* Λ *on* X *which extends* λ *s.t.* $\|\Lambda\| = \|\lambda\|$ *.*

3.3 Main Theorems on Banach Spaces

Recall if *M* is a metric space, $A \subset M$, then A^o is the interior of *A*, *i.e.*, the largest open set contained in *A*. A set $A \subset M$ is *nowhere dense* if \overline{A} has an empty interior, *i.e.*, \overline{A} contains no open set.

Example 3.16. Suppose $A = \{x_i\}_{i=1}^n \subset \mathbb{R}$, *i.e.*, a finite sequence. Then *A* is nowhere dense since $\overline{A} = A$, and *A* contains no open balls.

Example 3.17. $\mathbb{Q} \subset R$ is not nowhere dense because $\mathbb{Q} = \mathbb{R}$ and \mathbb{R} does contain open balls.

Proposition 3.18. Let X, Y be n.l.s.'s. Let $T : X \to Y$ be linear. Then T is bounded iff $T^{-1}(B)$ has *nonempty interior, where* $B = \{y \in Y \mid ||y|| \leq 1\}$ *is the closed unit ball of Y*.

Recall that in a metric space $X, A \subset X$ is *first category* if $A = \bigcup A_n$ s.t. A_n are nowhere dense. A is *second category* if it is not first category.

Theorem 3.19 (Baire category theorem)**.** *A complete metric space is never the union of a countable number of nowhere dense sets, i.e., it is second category.*

Theorem 3.20 (Banach-Steinhaus theorem). Let X be a Banach space, Y be a n.l.s., and $\mathcal F$ be a family of *bounded linear transformations from X to Y*. Suppose that $\forall x \in X$ *,* $S_x = \{||Tx|| \mid T \in \mathcal{F}\}\$ is a bounded set *in* R*. Then the set*

$$
S = \{ ||T|| \mid T \in \mathcal{F} \}
$$

is also bounded.

Theorem 3.21 (Open mapping theorem). Let $T: X \to Y$ be a bounded linear transformation, where X, Y *are Banach spaces. If* E *is an open set in* X *, then* $T(E)$ *is an open set in* Y *.*

Corollary 3.22 (Inverse mapping theorem). Let X, Y be Banach spaces. Let $T : X \rightarrow Y$ be a linear $transformation$ which is continuous and a bijection. Then T^{-1} is continuous.

Let *X*, *Y* be n.l.s's. Define $Z = X \oplus Y = \{(x, y) | x \in X, y \in Y\}$ with the following properties:

- (i) If $z_1 = (x_1, y_1), z_2 = (x_2, y_2),$ then $z_1 + z_2 = (x_1 + x_2, y_1 + y_2).$
- (ii) If $c \in \mathbb{C}, z = (x, y)$, then $cz = (cx, cy)$.

We can show *Z* is a vector space. If $z = (x, y)$, then define the norm $||z|| = ||x|| + ||y||$, so *Z* is a n.l.s. If *X,Y* are Banach spaces, then *Z* also is a Banach space. Let $T : X \rightarrow Y$. Then the graph of *T* is *G* = { $(x, Tx) | x ∈ X$ } ⊂ *Z*.

Theorem 3.23 (Closed graph theorem). Let *X,Y* be Banach spaces, $Z = X \oplus Y$, and $T : X \rightarrow Y$ be a *linear map. Then T is bounded iff the graph of T is a closed set in Z.*

4 Fourier Analysis and Wavelet Theory

4.1 Basic Properties of the Fourier Transform

Let F denote the Fourier transform operator. For a function $f \in L^2(-\infty, \infty)$, we can write

$$
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c(\xi) e^{ix\omega} d\omega,
$$

where $\hat{f}(\omega)$, called the *Fourier transform* of f is

$$
\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\omega} dx.
$$

Consider a discontinuous function *f* and try to apply the first few partial sums of its Fourier series. It turns out that a single discontinuity results in large errors appearing near the singularity, which propagates the error elsewhere too! In general, singularities cause high-frequency components so that the Fourier series has large *cⁿ* for large *n*, which is bad for convergence. Wavelets can deal with the problem of localization of singularities.

There are several advantages of Fourier series. Frequency content are displayed in sizes of coefficients *aⁿ* and b_n . It is also easy to write derivatives of f in terms of series. However, Fourier series is usually not well-adapted for time-frequency analysis.

Theorem 4.1 (Plancherel's theorem)**.** *We have the following:*

- *(i) The Fourier transform is a one-to-one correspondence from L* 2 *to itself.*
- *(ii) The Fourier transform preserves inner products, i.e., if* \hat{f} , \hat{g} *are the Fourier transforms of* f , g *, respectively, then* $\langle \hat{f}(\omega), \hat{g}(\omega) \rangle = \langle f(x), g(x) \rangle$ *.*
- (iii) *Thus,* $|| f(x) ||^2 = || \hat{f}(\omega) ||^2$.

If we the Fourier series of a function $f \in L^2[-\pi, \pi]$, the above theorem has an analog on $[-\pi, \pi]$:

Theorem 4.2 (Plancherel's theorem for Fourier series)**.** *We have the following:*

- *(i)* The correspondence between functions $f \in L^2[-\pi,\pi]$ and the coefficients $\{c_k\}$ of their Fourier series *is a one-to-one correspondence, if we restrict* $\sum c_k^2 < \infty$ *.*
- *(ii) Furthermore,* $\sum ||c_k||^2 = \frac{1}{2\pi} ||f(x)||^2$.

Th *convolution* of two functions $f(x)$ and $g(x)$ is defined to be

$$
(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy.
$$

Proposition 4.3 (Properties of the Fourier transform). Let $\hat{f} = \mathcal{F}(f)$. Then, the Fourier transform has the *following properties:*

- (f) $\mathcal{F}(f(x-c)) = e^{-i\omega c} \hat{f}(\omega).$
- $f(i) \mathcal{F}(f'(x)) = i\omega \hat{f}(\omega).$
- (iii) $\mathcal{F}(f(cx)) = \frac{1}{c}\hat{f}(\omega/c)$ *.*

$$
(iv) \ \mathcal{F}(xf(x)) = i[\hat{f}(\omega)]'.
$$

 $f((f * g)(x)) = \sqrt{2\pi} \hat{f}(\omega) \hat{g}(\omega).$

$$
(vi) \mathcal{F}(f(-x)) = \hat{f}(\omega).
$$

Lemma 4.4. *The Fourier transform of an integrable function is absolutely continuous.*

Theorem 4.5 (Decay rate of the Fourier transform)**.** *We have the following:*

(i) If a function $\psi(x)$ has *n* derivatives which are integrable and which go to 0 at ∞ , then the Fourier *transform satisfies*

$$
|\hat{\psi}(\omega)| \le K(1 + |\omega|)^{-n}.\tag{3}
$$

Conversely, if Equation [\(3\)](#page-12-2) *holds, then* $\psi(x)$ *has at least* $n-2$ *derivatives.*

(ii) Similarly, if $\hat{\psi}(\omega)$ *and its first n derivatives are integrable and go to* 0 *at* ∞ *, then*

$$
|\psi(x)| \le K(1+|x|)^{-n}.\tag{4}
$$

Conversely, if Equation [\(4\)](#page-12-3) *holds, then* $\hat{\psi}(\omega)$ *has at least* $n-2$ *derivatives.*

4.2 Wavelet Transform

Consider a fixed function $h(x)$. Then form all translations by integers, and all scalings by powers of 2:

$$
h_{jk}(x) = 2^{j/2}h(2^{j}x - k).
$$

Then let

$$
c_{jk} = \int f(x)h_{jk}(x) dx = \langle f, h_{jk} \rangle.
$$

If *h* is chosen properly, then we can get back *f* from the c_{ik} :

$$
f(x) = \sum_{j,k} c_{jk} h_{jk}(x).
$$

We will show that it is possible to find a function h s.t. the functions h_{jk} form a perfect basis for functions on R, that is, the h_{jk} are orthogonal and any function can be represented by the h_{jk} . As a result, wavelet series are like Fourier series, but *hjk* are better, *e.g.*, non-zero only on a small sub-interval, compactly supported.

4.3 Haar Wavelets

Consider basis function $\phi(x) = \chi_{[0,1]}$, the basic pixel. We want to build all other functions out of this and translates $\phi(x-k)$ for $k \in \mathbb{Z}$. Define V_0 to be all square integrable functions of the form $g(x) = \sum_k a_k \phi(x-k)$, *i.e.*, the square integrable functions which are constant on integer intervals. To get better approximations, we shrink the pixels. Define V_j to be all square integrable functions of the form $g(x) = \sum_k a_k \phi(2^j x - k)$, *i.e.*, the square-integrable functions which are constant on 2^{-j} length intervals.

Then define the wavelet

$$
\psi(x) = \begin{cases}\n1 & \text{if } 0 \leq x < 1/2 \\
-1 & \text{if } 1/2 \leq x < 1 \\
0 & \text{otherwise.} \n\end{cases}
$$

We define the family of Haar wavelets by translating and stretching the basic wavelet above. In general, we have

$$
\psi_{jk} := 2^{j/2} \psi(2^j x - k).
$$

It is easy to show that the ψ_{jk} are orthogonal. Can any function be represented as a combination of Haar wavelets? Recall the definition of V_j . Notice that we have

- $(a) \cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots$.
- (b) $\cap V_n = \{0\}.$
- (c) ∪ V_n is dense in $L^2(\mathbb{R})$.
- (d) $f(x) \in V_n \implies f(2x) \in V_{n+1}$.
- (e) $f(x) \in V_0 \implies f(x-k) \in V_0$.
- (f) There exists an orthogonal basis for the space V_0 in the family of functions $\phi_{0k} := \phi(x k)$ where $k \in \mathbb{Z}$. This function ϕ is (in this case) $\phi = \chi_{[0,1]}(x)$. ϕ is called a *scaling function*.

A sequence of spaces $\{V_i\}$ together with a scaling function ϕ which generates V_0 s.t. (a)-(f) above are satisfied is called a *multiresolution analysis* (MRA).

Recall that a vector space *V* is a *direct sum* $M_1 \oplus M_2$ of subspaces M_1, M_2 if every vector $v \in V$ can be written uniquely as a sum of vectors $w_1 \in M_1$ and $w_2 \in M_2$. *V* is an *orthogonal* direct sum $M_1 \oplus M_2$ if the above holds and in addition *M*¹ and *M*² are orthogonal.

Theorem 4.6. Assume *V* is a Hilbert space and subspaces $M_1 \perp M_2$. Assume also that $V = M_1 + M_2$, i.e., $\forall v \in V, \ \exists m_i \in M_i \ s.t. \ v = m_1 + m_2. \ \ Then \ V = M_1 \oplus M_2 \ \ is \ an \ orthogonal \ direct \ sum \ of \ M_1 \ and \ M_2.$

If $V = W_1 \oplus W_2$ is an orthogonal direct sum, we also write $W_1 = V \ominus W_2$ and $W_2 = V \ominus W_1$.

Recall the definition of V_j . Since $V_0 \subset V_1$, there exists a subspace $W_0 = V_1 \oplus V_0$ s.t. $V_0 \oplus W_0 = V_1$. Note that generally, we have

$$
W_{j-1} = V_j \ominus V_{j-1}.
$$

Lemma 4.7. *In a Hilbert space H*, *if* w_k *are orthogonal vectors and the sum* $\sum_k ||w_k||^2 < \infty$, *then the sum* $\sum_k w_k$ *converges.*

By definition of direct sum, we have

$$
V_n = \bigoplus_{k=-\infty}^{n-1} W_k,
$$

$$
V_n^{\perp} = \bigoplus_{k=n}^{\infty} W_k.
$$

As a result, we have $L^2 = \bigoplus_{-\infty}^{\infty} W_n$, so we have:

Theorem 4.8. Every vector $f \in L^2(-\infty, \infty)$ can be uniquely expressed as a sum $\sum_{j=-\infty}^{\infty} w_j$, where $w_j \in W_j$.

What are the W_j spaces? Consider W_0 . Define A to be the functions which are constant on half-integers and take equal and opposite values on half of each integer intervals. We claim that $W_0 = A$. In general, we can show that W_j are the square integrable functions that take on equal and opposite values on each half of the dyadic intervals of length 2^{-j-1} .

What is a basis for W_j ? We can show that a basis for W_j is $\{2^{j/2}\psi(2^jx-k)\}_{k=-\infty}^{\infty}$. Define $\psi_{jk}(x)$ = $2^{j/2}\psi(2^{j}x - k)$. Using Theorem [4.8,](#page-13-1) we can show that every $f \in L^{2}$ can be written as

$$
f = \sum_{j} \sum_{k} a_{jk} \psi_{jk}(x).
$$

Note that the ψ_{jk} form an orthonormal basis for L^2 .

4.4 General Multiresolution Analysis

Suppose we use a different pixel function $\phi(x)$. Can we use this function to build approximations to general functions?

Consider the following assumptions. $|\phi(x)|$ has a finite integral s.t. $\int \phi(x) dx \neq 0$. Suppose $\phi(x)$ is a normalized function s.t. $\int \phi(x)^2 dx = 1$.

In the general construction, define V_0 to be all L^2 combinations of ϕ and its translates, *i.e.*, $V_0 = \{f(x) =$ $\sum a_k \phi_{0k}(x) \mid a_k \in \mathbb{R}, f \in L^2$ with $\phi_{0k}(x) = \phi(x - k)$. Define V_1, V_2, \ldots in a similar manner, *i.e.*,

$$
V_j = \{ f(x) = \sum_k a_k \phi(2^j x - k) \mid a_k \in \mathbb{R}, f \in L^2 \}.
$$

Note that $f(x) \in V_n \implies f(2x) \in V_{n+1}$.

We can show that the basis $\{\phi(x - k)\}\$ for V_0 is orthogonal. Note that this is not automatic because $\phi(x-k)$ and $\phi(x-k-1)$ can overlap now. It is possible to show that $\sum |\hat{\phi}(\omega - 2n\pi)|^2 = \frac{1}{2\pi}$ is equivalent to orthonormality of $\{\phi(x-k)\}.$

What must be true of ϕ for $V_0 \subset V_1$ in general? We need $\phi(x)$ to be a linear combination of translates of $\overline{2}\phi(2x) = \sum_{k} h_k \phi_{1k}(x)$, where $\phi_{1k}(x) = 2^{1/2} \phi(2x - k)$.

Example 4.9. Suppose $\phi(x)$ is the scaling function of the Haar wavelet, then we know that

$$
\phi(x) = \phi(2x) + \phi(2x - 1)
$$

= $\frac{1}{\sqrt{2}}\phi_{10}(x) + \frac{1}{\sqrt{2}}\phi_{11}(x)$
= $h_{10}\phi_{10}(x) + h_{11}\phi_{11}(x)$.

Thus, in this case all h 's are 0 except h_{10} and h_{11} . Note that in general that since this is an orthonormal expansion, $\sum_{k} h_k^2 = ||\phi(x)||^2 < \infty$.

In general, we have

$$
\phi(x) = \sum_{k=-\infty}^{\infty} h_k \phi_{1k}(x) = \lim_{N \to \infty} \sum_{k=-N}^{N} h_k \phi_{1k}(x) := \lim_{N \to \infty} F_N(x)
$$

in the sense that

$$
\left\|\phi(x) - \sum_{k=-N}^{N} h_k \phi_{1k}(x)\right\| \to 0.
$$

Corollary 4.10 (Corollary of Plancherel theorem)**.** *The Fourier transform is a bounded linear transformation. In particular, if the sequence of functions* $\{F_N(x)\}$ *converges in* L^2 *norm, then*

$$
\mathcal{F}\left(\lim_{n\to\infty}F_N\right)(\omega)=\lim_{N\to\infty}\mathcal{F}(F_N)(\omega)
$$

in L ² *norm, i.e., Fourier transforms commute with limits.*

It follows that $\mathcal{F}\left(\sum h_k \phi_{1k}(x)\right) = \sum h_k \mathcal{F}(\phi_{1k}(\omega))$. If $\mathcal{F}(\phi)(\omega) := \hat{\phi}(\omega)$, then generally

$$
\mathcal{F}(\phi_{jk})(\omega) = 2^{-j/2} e^{-i\omega k/2^j} \hat{\phi}(\omega/2^j).
$$

Then we can show that

$$
\hat{\phi}(\omega)(x) = \sum_{k=-\infty}^{\infty} h_k \frac{1}{\sqrt{2}} e^{-ik(\omega/2)} \hat{\phi}(\omega/2).
$$

Define $m(\omega/2) = \sum h_k \frac{1}{\sqrt{k}}$ $\frac{1}{2}e^{-ik(\omega/2)}$. Note that *m* is 2π -periodic. Also note that $m(\omega) \in L^2[0, 2\pi]$, so

$$
\hat{\phi}(\omega) = m(\omega/2)\hat{\phi}(\omega/2). \tag{5}
$$

This condition exactly summarizes our demand that $V_0 \subset V_1$. Then it follows that $V_j \subset V_{j+1}$ in general.

Now let us introduce some preliminaries. Given a Hilbert space *H* and a closed subspace *V*, for $f \in H$, write $f = v + v^{\perp}$, where $v \in V, v^{\perp} \in V^{\perp}$. The operator P defined by $Pf = P(v + v^{\perp}) = v$ is the *orthogonal projection* onto *V* .

Example 4.11. Suppose $V \subset L^2[-\pi, \pi]$ is the set of even functions. Then for $f \in L^2$, $Pf(x) = f_{\text{even}}(x)$ *f*(*x*)+*f*(−*x*) $\frac{-f(-x)}{2}$.

4.5 General Wavelets

Now how do we construct new wavelets? Recall that the condition $\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots$ is equivalent to $\hat{\phi}(\omega) = m_0(\omega/2)\hat{\phi}(\omega/2)$.

Also recall that the condition there exists an orthogonal basis for V_0 in the family of functions $\phi(x - k)$ is equivalent to $\sum |\hat{\phi}(\omega + 2\pi k)|^2 = \frac{1}{2\pi}$. If it is also the case that $\phi \in L^2(\mathbb{R})$, then $\cap V_j = \{0\}$ and $\overline{\cup V_j} = L^2(\mathbb{R})$.

Theorem 4.12 (Conditions for an MRA). The conditions $\hat{\phi}(\omega) = m(\omega/2)\hat{\phi}(\omega/2)$ and $\sum |\hat{\phi}(\omega + 2\pi k)|^2 = \frac{1}{2\pi}$
are necessary and sufficient for the spaces $\{V_j\}$ and scaling function ϕ to form a multiresolution

We can also show that $|m_0(\omega/2)|^2 + |m_0(\omega/2 + \pi)|^2 = 1$. Also, since $\{\phi_{jk}(x)\}\$ form a basis for V_j , so the wavelets ψ_{jk} will form a basis for W_j .

Furthermore, if we consider the Fourier transform is defined as follows

$$
\hat{\psi}(\omega) = e^{i\omega/2} \overline{m_0(\omega/2 + \pi)} \hat{\phi}(\omega/2). \tag{6}
$$

We can show that

$$
\hat{\phi}(\omega) = \frac{1}{\sqrt{2\pi}} \prod_{j=1}^{\infty} m_0 \left(\frac{\omega}{2^j} \right). \tag{7}
$$

Hence, if we can find $m_0(\omega)$, then we can also find the scaling function ϕ .

Example 4.13. Consider the Haar wavelet. We have $\hat{\phi}(\omega) = \frac{2}{\sqrt{2}}$ $\frac{2}{2\pi\omega}e^{-i\omega/2}\sin\frac{\omega}{2}$, so by Equation [\(5\)](#page-14-0), we have $\hat{\phi}(\omega) = e^{-i\omega/4} \cos \frac{\omega}{2}$. Then by Equation [\(6\)](#page-15-2), we have

$$
\hat{\psi}(\omega) = -\frac{4i}{\sqrt{2\pi}\omega}e^{i\omega/2}\sin^2\frac{\omega}{4}.
$$

4.6 Meyer Wavelets

The Meyer wavelet is defined by the scaling function

$$
\hat{\phi}(\omega) = \frac{1}{\sqrt{2\pi}} \begin{cases} 1 & \text{if } |\omega| \le \frac{2\pi}{3} \\ \cos\left[\frac{\pi}{2}\nu\left(\frac{3}{2\pi}|\omega| - 1\right)\right] & \text{if } \frac{2\pi}{3} \le |\omega| \le \frac{4\pi}{3} \\ 0 & \text{otherwise,} \end{cases}
$$

where ν is any infinitely differentiable non-negative function satisfying

$$
\nu(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x \ge 1 \\ \text{smooth transition in } \nu : 0 \to 1 \text{ as } x : 0 \to 1, \end{cases}
$$

where $\nu(x) + \nu(1-x) = 1$. We can verify that it has all the right properties in Theorem [4.12.](#page-15-3)

Note that since $\hat{\phi}(\omega)/\hat{\phi}(\omega/2) = \sqrt{2\pi}\hat{\phi}(\omega)$ in $[-2\pi, 2\pi]$, we can define $m_0(\omega/2) = \sqrt{2\pi}\hat{\phi}(\omega)$ if $\omega \in [-2\pi, 2\pi]$. The definition is ambiguous outside this interval since both the numerator and denominator is zero. Therefore, define m_0 by periodic extension by adding all possible translates of the bump $\phi(\omega)$ to make it 4*π*-periodic:

$$
m_0(\omega/2) = \sqrt{2\pi} \sum_k \hat{\phi}(\omega + 4\pi k).
$$

We can show that

$$
\hat{\psi}(\omega) = \frac{1}{\sqrt{2\pi}} \begin{cases} e^{i\omega/2} \sin\left[\frac{\pi}{2}\nu\left(\frac{3}{2\pi}|\omega|-1\right)\right] & |\omega| \in \left[\frac{2\pi}{3}, \frac{4\pi}{3}\right] \\ e^{i\omega/2} \cos\left[\frac{\pi}{2}\nu\left(\frac{3}{4\pi}|\omega|-1\right)\right] & |\omega| \in \left[\frac{4\pi}{3}, \frac{8\pi}{3}\right] \\ 0 & \text{otherwise.} \end{cases}
$$

Proposition 4.14 (Properties of the Meyer wavelet). The Meyer wavelet $\psi(x)$ has the following properties:

• $\hat{\psi}(\omega)$ *is infinitely differentiable, and one can check that all derivatives are* 0 *from both sides at the break.*

- *The support of* $\hat{\psi}(\omega)$ *is on a finite interval.*
- $\psi(x)$ *decays at* ∞ *faster than any inverse power of x.*
- $\psi(x)$ *is infinitely differentiable.*

Claim 4.15. $\psi_{jk}(x) = 2^{j/2}\psi(2^{j}x - k)$ forms an orthonormal basis for $L^{2}(\mathbb{R})$.

4.7 Daubechies Wavelets

Theorem 4.16 (Cohen, 1990). If the trigonometric polynomial m_0 satisfies $m_0(0) = 1$, $|m_0(\omega)|^2 + |m_0(\omega +$ $|\pi| = (1, \text{ and } m_0(\omega) \neq 0 \text{ for } |\omega| \leq \pi/3, \text{ then } \sum |\hat{\phi}(\omega + 2\pi k)|^2 = \frac{1}{2\pi} \text{ is satisfied by Equation (7)}.$ $|\pi| = (1, \text{ and } m_0(\omega) \neq 0 \text{ for } |\omega| \leq \pi/3, \text{ then } \sum |\hat{\phi}(\omega + 2\pi k)|^2 = \frac{1}{2\pi} \text{ is satisfied by Equation (7)}.$ $|\pi| = (1, \text{ and } m_0(\omega) \neq 0 \text{ for } |\omega| \leq \pi/3, \text{ then } \sum |\hat{\phi}(\omega + 2\pi k)|^2 = \frac{1}{2\pi} \text{ is satisfied by Equation (7)}.$ A choice of m_0 is

$$
m_0(\omega) = \frac{1}{8}[(1+\sqrt{3}) + (3+\sqrt{3})e^{-i\omega} + (3-\sqrt{3})e^{-2i\omega} + (1-\sqrt{3})e^{-3i\omega}].
$$

Recall that once we have an orthonormal wavelet basis $\{\psi_{jk}\}\$, we can write any function

$$
f(x) = \sum_{j,k} a_{jk} \psi_{jk}(x),
$$

where $a_{jk} = \langle f, \psi_{jk} \rangle$. Numerically, we can find a_{jk} using numerical integration on the computer. There are very efficient methods of doing this: for one wavelet, all others are rescalings and translations of the original one.

4.8 General Properties of Orthonormal Wavelet Bases

Theorem 4.17. If the basic wavelet $\psi(x)$ has exponential decay, then ψ cannot be infinitely differentiable. Recall that the Haar wavelets had compact support. When will wavelets have compact support in general? For $\phi(x) \in V_0 \subset V_1$, we have for some choice of h_k :

$$
\phi(x) = \sum_{k} h_k \sqrt{2} \phi(2x - k).
$$

The constants h_k relate V_0 to V_1 .

Theorem 4.18. Suppose the h_k are defined as above. ψ, ϕ have compact support iff finitely many $h_k \neq 0$. Suppose we start with a finite sequence of numbers h_k . Construct

$$
m_0(\omega) = \sum_k \frac{h_k}{\sqrt{2}} e^{-ik\omega},
$$

$$
\hat{\phi}(\omega) = \frac{1}{\sqrt{2\pi}} \prod_{j=1}^{\infty} m_0(2^{-j}\omega),
$$

$$
\hat{\psi}(\omega) = e^{i\omega/2} \overline{m_0(\omega/2 + \pi)} \hat{\phi}(\omega/2).
$$

Finally, take the inverse Fourier transform to get the wavelet $\psi(x)$.

Do wavelet expansions actually converge to the function being expanded at individual points?

Theorem 4.19. *Assume that scaling function* ϕ *is bounded by an integrable decreasing function.* If $f \in L^2$, *then the wavelet expansion of f converges pointwise a.e. to f.*

How fast do wavelet expansions converge to *f*? It depends on how "regular" the wavelet is.

Theorem 4.20. *In d dimensions, the wavelet expansion of f converges to a smooth f in such a way that the partial sum*

$$
\sum_{j \le N,k} a_{jk} \psi_{jk}(x)
$$

differs from $f(x)$ *at each x by at most* $C \cdot 2^{-Ns}$ *iff*

$$
\int |\hat{\psi}(\omega)|^2 |\omega|^{-2s-d} d\omega < \infty.
$$

4.9 Continuous Wavelet Transforms

Consider a function $\psi(x) \in L^2$ s.t. ψ decays faster than $1/x^2$ at ∞ and $\int \psi(x)dx = 0$. Then we can define an integral wavelet expansion using rescalings of $\psi(x)$ with rescaled functions

$$
\psi_{a,b} = |a|^{1/2} \psi(a(x-b)),
$$

where $a, b \in \mathbb{R}$. Thus, a is a dilation parameter and b is a translation parameter. Now define the wavelet transform as follows:

$$
(Wf)(a,b) = \langle \psi_{a,b}, f \rangle = \int \overline{\psi_{a,b}(x)} f(x) dx.
$$

How do we recover f from $(Wf)(a, b)$?

Claim 4.21. *We have*

$$
f(x) = C \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (Wf)(a, b)\psi_{a,b} da \, db,
$$

$$
C^{-1} = -2\pi \int |\omega|^{-1} |\hat{\phi}(\omega)|^2 \, d\omega.
$$

where

4.10 Application of the Integral Wavelet Transform: Image Reconstruction

Dyadic wavelet transforms are a variation on the continuous wavelet transform. In this case, we only allow dilations by powers of 2:

$$
\psi_{j,b}(x) = 2^j \psi(2^j(x-b)).
$$

Define $\psi_i(x) = 2^j \psi(2^j x)$. Then this dyadic wavelet transform is defined by

$$
(Wf)(j,b) = \int f(x)\psi_{j,b}(x) dx.
$$

$$
= (f * \psi_j)(b).
$$

Assume that the Fourier transform $\hat{\psi}(\omega)$ satisfies $\sum_{-\infty}^{\infty} |\hat{\psi}(2^j\omega)|^2 = \frac{1}{2\pi}$. Then under these assumptions, we can show that we can recover f in this casel. The recovery formula for f is

$$
f(x) = \sum_{j=-\infty}^{\infty} (Wf)(j,x) * \psi_j(-x).
$$

Given $f(x)$, what sort of function is the wavelet transform $(Wf)(j, b)$ as a function of *j* and *b*?

Suppose *V* is the collection of possible wavelets. When is an arbitrary function $g(j, b)$ a wavelet transform? We can check that *g* must satisfy a so-called reproducing kernel equation. $g(j, b)$ is the wavelet transform of some function iff

$$
g(j,b)=(Kg)(j,b):=\sum_{\ell=-\infty}^{\infty}\psi_j(b)*\psi_\ell(-b)*g(\ell,b).
$$

Let us consider recovering f from the wavelet transform. We can recover f as a sum of f at different scales:

$$
f = \sum_{j=-\infty}^{\infty} (Wf)(j, x) * \psi_j(-x).
$$

Since *ψ* is a known function, we can recover *f* from a sequence of functions. Assume *a*(*x*) is a cubic B-spline. Then we let the wavelet be its first derivative: $\psi(x) = a^{\bar{I}}(x)$.

Conjecture 4.22. We can recover f not from knowing all of the functions $W(j, x)$, but just from knowing *their maxima and minima.*

Meyer proved this conjecture false for certain choices of *ψ*. However, it is true for the derivative of the Gaussian: $\psi(x) = [e^{-x^2}]'.$

Assume that we are given only the maxima and minima points of the function $W(j, x)$ for each *j*. How do we recover *f*?

Define Γ to be the set of all functions *g*(*j, x*) which have the same set of maxima and minima (in *x*) as *W*(*j, x*) for each *j* and *V* to be the set of all $g(j, x)$ which are wavelet transforms of some function of *x*. The idea is that $W f \in \Gamma \cap V$.

The algorithm is as follows:

- 1. Start with only the maxima information about $Wf(j, x)$. Call M the maxima information.
- 2. Make an initial guess of the full $Wf(j, x)$ using any function $g_1(j, x)$ which has the same maxima as *W f*(*j, x*).
- 3. Find the closest function $g_2(j, x) \in V$ to $g_1(x)$.
- 4. Find the closest function $g_3(j, x) \in \Gamma$ to g_2 .
- 5. Continue this way: at each stage *j*: find the closest function g_j to g_{j-1} in the space *V* or Γ (alternatingly).
- 6. Eventually $g_j(j, x) \xrightarrow{j \to \infty} W f(j, x)$.

The conclusion is that we can recover the wavelet transform of a function just by knowing its maxima in *x*. As a result, we can use this for compression of images.

4.11 Wavelets and Wavelet Transforms in Two Dimensions

MRA and wavelets can be generalized to higher dimensions. The usual choice for a two-dimensional scaling function or wavelet is a product of two one-dimensional functions.

For example, $\phi_2(x, y) = \phi(x)\phi(y)$ and scaling equation has form $\phi(x, y) = \sum_{k,l} h_{kl} \cdot 2\phi(2x - k, 2y - l)$. Since both $\phi(x), \phi(y)$ satisfy the scaling equation, we have $h_{kl} = h_k h_l$. Thus the two dimensional scaling equation is the product of two one-dimensional scaling equations. Hence, we can proceed analogously to construct wavelets using one-dimensional functions. However, now there are three types of basic wavelets:

$$
\psi^{(I)}(x, y) = \phi(x)\psi(y)
$$

$$
\psi^{(II)}(x, y) = \psi(x)\phi(y)
$$

$$
\psi^{(III)}(x, y) = \psi(x)\psi(y).
$$

5 Topological Spaces

A *topological space* is a set *S* together with a distinguished family F of subsets of *S* called *open sets* with the following properties:

- (i) $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}.$
- (ii) $A_{\beta} \in \mathcal{F}$ for $\beta \in B \implies \cup_{\beta \in B} A_{\beta} \in \mathcal{F}$.

(iii)
$$
\emptyset, S \in \mathcal{F}
$$
.

If $x \in S$, a set *N* is a *neighborhood* of *x* if there exists an open set *U* s.t. $x \in U \subset N$. A set $F \subset S$ is *closed* if F^c is open.

Let *S*, *T* be two topological spaces. A function $f : S \to T$ is *continuous* if $f^{-1}(U)$ is open for any open set U ⊂ T .

A set *A* ⊂ *S* is *dense* if every open set in *S* contains at least one point in *A*. *S* is *separable* if it contains a countable subset *A* which is dense in *S*.

A family N of subsets of S is a *neighborhood base* at $x \in S$ if each $N \in \mathcal{N}$ is a neighborhood of x and for any other neighborhood *M* containing *x*, $\exists N \in \mathcal{N}$ s.t. $N \subset M$.

A family N of subsets of S is a *base* for S if every open set $M \subset S$ can be expressed as a union of sets in N, *i.e.*,

$$
M = \bigcup_{A \in \mathcal{N}: A \subset M} A.
$$

S is *first countable* if each $x \in S$ has a countable neighborhood base. *S* is *second countable* if *S* has a countable base.

We have the following:

- (a) A topological space is called a T_1 *space* iff $\forall x, y$ s.t. $x \neq y$, there exists an open set O with $y \in O, x \notin O$. Equivalently, a space is T_1 iff $\{x\}$ is closed $\forall x$.
- (b) A topological space is called *Hausdorff* (or T_2) if $\forall x, y$, there exists disjoint open sets O_1, O_2 s.t. $x \in O_1, y \in O_2.$
- (c) A topological space is called *regular* (or T_3) iff it is T_1 and $\forall x$ and C closed with $x \notin C$, there exists open sets O_1, O_2 s.t. $x_1 \in O_1, C \subset O_2, O_1 \cap O_2 = \emptyset$. Equivalently, a space is T_3 if the closed neighborhoods of any point are a neighborhood base.
- (d) A topological space is called *normal* (or T_4) iff it is T_1 and $\forall C_1, C_2$ closed with $C_1 \cap C_2 = \emptyset$, there exists open sets O_1 , O_2 with $C_1 \subset O_1$, $C_2 \subset O_2$, $O_1 \cap O_2 = \emptyset$.

Proposition 5.1. $T_4 \implies T_3 \implies T_2 \implies T_1$.

Proposition 5.2. *We have the following:*

- *(i) Every metric space is first countable.*
- *(ii) A metric space is second countable iff it is separable.*
- *(iii) Any second countable topological space is separable.*

A topological space is called *disconnected* iff it contains a nonempty proper subset which is both open and closed. Equivalently, a topological space is disconnected iff it can be written as the union of two disjoint nonempty closed sets.

5.1 Nets

Nets are generalizations of sequences appropriate to general topological spaces, not just metric spaces.

Example 5.3. Consider the limit $\lim_{n\to\infty} \frac{n}{n+1}$ where $n \in \mathbb{N}$. This is a limit of a sequence. Then $\lim_{x\to\infty} \frac{x}{x+1}$ where $x \in \mathbb{R}$ is a limit of a net.

A *directed system* is a set *I* together with an order \prec on *I* which satisfies

- (a) if $\alpha, \beta \in I$, $\exists \gamma \in I$ s.t. $\alpha \prec \gamma, \beta \prec \gamma$.
- (b) \prec is a partial ordering.

A *net* in *S* is a set $\{x_\alpha\}_{\alpha \in I} \subset S$, where *I* is a directed sequence. If $I = \mathbb{N}$, then the net is called a *sequence*.

Example 5.4. *I* can be the collection of all subsets of a set *A*. If $\alpha, \beta \in I$, then $\alpha \prec \beta$ if $\alpha \subset \beta$.

Define $x_{\alpha} = \frac{1}{|\alpha|} \in S = \mathbb{R}$. Then $\{x_{\alpha}\}\$ is a net, and *I* is a directed system. A net $\{x_{\alpha}\}\$ *converges* to a point $x \in S$ if for any neighborhood *N* of *x*, $\exists \beta$ s.t. $x_{\alpha} \in N$ for $\alpha \succ \beta$.

Theorem 5.5. Let $A \subset S$ *, where S is a topological space. Then a point* $x \in \overline{A}$ *iff there exists a net* ${x_\alpha}_{\alpha\in I} \subset A \text{ s.t. } x_\alpha \to x.$

Theorem 5.6. *If S,T* are topological spaces. $f : S \to T$ is continuous iff for every net $\{x_\alpha\} \subset S$ which *converges, the net* $\{f(x_\alpha)\}\subset T$ *also converges.*

Theorem 5.7. *In a Hausdorff space, any net* $\{x_\alpha\}$ *can have at most one limit.*

A net $\{y_\beta\}_{\beta \in J}$ is a *subnet* of the net $\{x_\alpha\}_{\alpha \in I}$ if

- $\{y_\beta\}_{\beta \in J} \subset \{x_\alpha\}_{\alpha \in I}$.
- (b) $\forall \alpha \in I, \exists \beta \in J \text{ s.t. if } \beta' \succ \beta \text{, then } y_{\beta'} = x_{\alpha'} \text{ for an } \alpha' \succ \alpha.$

Proposition 5.8. *If a net* $x_{\alpha} \to x$ *, then every subnet* y_{β} *of* x_{α} *also converges to x.*

Let (S, \mathcal{F}) be a topological space. Let $A \subset S$. Define $\mathcal{F}_A = \{O \cap A \mid O \in \mathcal{F}\}$. Then (A, \mathcal{F}_A) is a topological space, and \mathcal{F}_A is called the *relative topology* on A .

5.2 Compactness

Given a collection of sets C , we say that C is a *cover* of (or covers) another set F if F is contained in the union of the sets in C. We say that C is an *open cover* of F if all sets in C are open. A set $A \subset S$ is *compact* if any open cover of *A* has a finite subcover.

Theorem 5.9 (Heine-Borel theorem). $S \subset \mathbb{R}^n$ *is compact iff it is closed and bounded.*

Theorem 5.10 (Bolzano-Weierstrass theorem)**.** *A set A is compact iff every net in A has a convergent subnet.*

Proposition 5.11. *We have the following:*

(a) A closed subset of a compact set is compact.

(b) Suppose S,T are topological spaces. If $f : S → T$ is continuous and $A ⊂ S$ is compact, then $f(A)$ is *compact.*

Proposition 5.12. *In a Hausdorff space, every compact set is closed.*

Let *S*, *T* be topological spaces. Let $f : S \to T$ be a continuous bijection with f^{-1} continuous. Then, *f* is a *homeomorphism*.

Theorem 5.13. If *S*, *T* are compact Hausdorff spaces, and $f : S \rightarrow T$ is continuous and a bijection, then f *is a homeomorphism.*

A topological space *S* is *normal* if

- (i) $\forall x, y \in S$, there exists an open set $O \subset S$ s.t. $x \in O, y \notin O$.
- (ii) If $C_1, C_2 \subset S$ where C_1, C_2 are closed and disjoint, then there exists disjoint open sets O_1, O_2 s.t. C_1 ⊂ O_1 , C_2 ⊂ O_2 .

Theorem 5.14 (Urysohn's lemma). Let X be a normal space, and C_1 , C_2 be disjoint closed sets in X. Then *there exists a continuous function* $f: X \to \mathbb{R}$ *with* $0 \le f(x) \le 1$ *s.t.* $f(x) = 0$ *if* $x \in C_1$ *and* $f(x) = 1$ *if* $x \in C_2$ *.*

Lemma 5.15. *A continuous function on a compact set K is bounded.*

Theorem 5.16. Let *X* be a compact Hausdorff space. Let $C(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous}\}\$ with norm ∥*f*∥[∞] = sup |*f*(*x*)|*. Then C*(*X*) *is a Banach space with this norm.*

Define $C_{\mathbb{R}}(X)$ to be the same of $C(X)$, using only real-valued functions.

A collection $\mathcal{G} \subset C(X)$ is a *subalgebra* of $C(X)$ if

- (i) $\mathcal G$ is a subspace of $C(X)$, *i.e.*, it is closed under addition and scalar multiplication.
- (ii) \mathcal{G} is closed under multiplication, *i.e.*, if $g_1, g_2 \in \mathcal{G}$, then $g_1 g_2 \in \mathcal{G}$.

 \mathcal{G} *separates points* in *X* if $\forall x_1, x_2 \in X$, $\exists g \in \mathcal{G}$ s.t. $g(x_1) \neq g(x_2)$.

Theorem 5.17 (Stone-Weierstrass theorem)**.** *Let X be a compact Hausdorff space. Let* G *be a subalgebra of* $C_{\mathbb{R}}(X)$ which is closed as a subset of $C_{\mathbb{R}}(X)$, and let G separate points in X. Then either $\mathcal{G} = C_{\mathbb{R}}(X)$ or $\mathcal{G} = \{g \in C_{\mathbb{R}}(X) \mid g(x_0) = 0\}$ for some fixed x_0 . Thus, if $g(x) = 1 \in \mathcal{G}$, then $\mathcal{G} = C_{\mathbb{R}}(X)$.

Corollary 5.18. *Real-valued polynomials* P *are dense in* $C_{\mathbb{R}}[a, b]$ *.*

Remark 5.19. If we replace $C_{\mathbb{R}}(X)$ by $C(X)$, for the Stone-Weierstrass theorem to be true, we require $\mathcal G$ to be a *star-algebra*, *i.e.*, it is closed under the operation $f \to f^*$ (complex conjugation of functions).

5.3 Measure Theory on Compact Spaces

Suppose X is a compact Hausdorff space. A set A in a topological space is a G_{δ} set if it is the intersection of a countable number of open sets.

Proposition 5.20. If *X* is a compact Hausdorff space, and $f \in C_{\mathbb{R}}(X)$, then $f^{-1}([a,\infty))$ is a compact G_{δ} *set.*

The σ -algebra generated by the compact G_{δ} sets is called the *Baire sets*. Functions measurable w.r.t. the Baire sets are the *Baire functions*. A measure on the Baire sets is a *Baire measure* if it is finite.

Remark 5.21. Note that the Baire sets is a subset of Borel sets since Borel sets contain all compact *G^δ* sets. In R, the Borel sets are the Baire sets since Borel sets are generated by closed intervals $[a, b]$, which are compact G_{δ} sets.

Theorem 5.22. *Every Baire measure is regular, i.e., if A is a Baire set, then* $\mu(A) = \inf{\mu(O)}$ *O open, Baire,* $O \supset A$ *} and* $\mu(A) = \sup \{ \mu(K) \mid K \text{ compact, Baire, } K \subset A \}.$

Theorem 5.23. *We have the following:*

- *(a) If µ is a measure on the Baire sets, then µ has a unique extension to a regular measure on the Borel sets.*
- *(b) If µ is a Baire measure which has been extended to a regular Borel measure, then every Borel set differs by at most a set of measure* 0 *for some Baire set.*

We continue to assume that $C(X)$ and the $C_{\mathbb{R}}(X)$ have the usual supremum norm. The theorems below apply to both $C(X)$ and $C_{\mathbb{R}}(X)$.

Let $\ell : C(X) \to \mathbb{C}$ (or $C_{\mathbb{R}}(X) \to \mathbb{R}$) be a continuous linear functional with $\ell(f) \geq 0 \ \forall f$ with $f(x) \geq 0 \ \forall x \in X$. Then *f* is called a *positive* linear functional.

Proposition 5.24. *If* ℓ *is a positive linear functional, then* $\|\ell\| = \ell(1)$ *.*

Example 5.25. Let *X* be a compact Hausdorff space and μ be a Baire measure. $\forall f \in C(X)$, define $\ell(f) = \int_X f(x) d\mu$. Then ℓ is a positive linear functional.

Theorem 5.26 (Riesz-Markov theorem)**.** *Let X be a compact Hausdorff space, and let ℓ be a positive linear functional on* $C(X)$ *. Then* $\exists !$ *Baire measure* μ *on* X *s.t.*

$$
\ell(f) = \int_X f \, d\mu \; \forall x \in C(X).
$$

What is the dual of $C_{\mathbb{R}}(X)$?

Theorem 5.27. Let ℓ be a bounded linear functional on $C_{\mathbb{R}}(X)$, i.e., $\ell \in C_{\mathbb{R}}(X)^*$. Then $\ell = \ell_+ - \ell_-$, where ℓ_+ , ℓ_- are unique positive linear functionals. Also, $||\ell|| = ||\ell_+|| + ||\ell_-|| = \ell_+(1) + \ell_-(1)$ *.*

Theorem 5.28 (General Riesz-Markov theorem). If ℓ is a general linear functional on $C_{\mathbb{R}}(X)$, then

$$
\ell(f) = \int_X f(x) \, d\mu,
$$

where µ is a signed measure, i.e., a generally nonpositive measure.

A topological space X is *locally compact* if every $p \in X$ has a compact neighborhood.

Remark 5.29. The Riesz-Markov theorem can be extended from compact spaces to locally compact spaces, *e.g.*, extending from [0, 1] to \mathbb{R} .

Recall that if $\mathcal{T}_1, \mathcal{T}_2$ are two topologies, then \mathcal{T}_1 is *weaker* than \mathcal{T}_2 if $\mathcal{T}_1 \subset \mathcal{T}_2$. If G is a collection of sets in X, $\mathcal T$ is the topology *generated* by $\mathcal G$ if $\mathcal T$ is the weakest topology where all sets in $\mathcal G$ are open. We can show that $\mathcal T$ is all possible unions of finite intersections of sets in $\mathcal G$.

Let *X* be a Banach space and X^* be its dual space. The *weak topology* on *X* is the weakest topology on *X* s.t. every linear functional $\ell \in X^*$ is continuous on X.

Suppose $\mathcal T$ is this topology. What are the open sets? Notice that $\mathcal T$ is the topology generated by all sets of the form $\ell^{-1}(O)$, where $O \subset \mathbb{R}$ is open and $\ell \in X^*$. We can show that $\mathcal T$ is all possible unions of sets of the form

$$
\bigcap_{i=1}^n \ell_i^{-1}(I_i) := N(\ell_1, \ldots, \ell_n; I_1, \ldots, I_n),
$$

where $\ell_i \in X^*, I_i \subset \mathbb{R}$ is an open interval. All sets of this form make a base for the topology \mathcal{T} . Additionally, sets of the form

$$
N(\ell_1,\ldots,\ell_n;\varepsilon)
$$

form a *neighborhood base* at $x = 0$.

Theorem 5.30. In the weak topology T, the net $x_{\alpha} \to x$ iff $\ell(x_{\alpha}) \to \ell(x)$ $\forall \ell \in X^*$.

Proposition 5.31. *We have the following:*

- *(a) The weak topology is weaker (not necessarily strictly weaker) than the norm topology (usual, strong topology) on X.*
- *(b) If* $x_{\alpha} \to x$ *in the weak topology, then* $||x_{\alpha}||$ *are all bounded.*
- *(c) The weak topology is Hausdorff.*

Example 5.32. Let *X* be a compact Hausdorff space. Note that $C(X)$ is a Banach space. Then, if f_n is a sequence of functionals in $C(X)$, we have $f_n \to f$ weakly iff $f_n(x) \to f(x)$ $\forall x$ and $||f_n||$ are all bounded uniformly.

5.4 The Weak* Topology

Let *X* be a Banach space and X^* be its dual space. The weak* topology is the weakest topology on X^* for which all functions $L_x, x \in X$ are continuous, where $L_x: X^* \to \mathbb{R}$ is defined by $L_x(\ell) = \ell(x)$.

Example 5.33. Let *X* be a compact Hausdorff space. Define $\mathcal{M}(X) = C_{\mathbb{R}}(X)^*$. We claim that $\mathcal{M}(X) \cong$ set of all signed finite Baire measures on *X* via the correspondence $\ell \longleftrightarrow \mu$, where $\ell \in \mathcal{M}(X)$ and μ is a signed measure on *X* s.t.

$$
\ell(f) = \int_X f(x) \, d\mu.
$$

Consider the weak^{*} topology on $C(X)^*$. This is called the *vague* topology on M, which arises in probability. If $X = \mathbb{R}$, and $\mu_n, \mu \in \mathcal{M}$, then the notion of $\mu_n \to \mu$ in the vague topology is the same as the notion of *weak convergence* in probability theorem. For $x \in X$, define δ_x to be a measure on *X* s.t.

$$
\delta(A) = \begin{cases} 0 & \text{if } x \notin A, \\ 1 & \text{if } x \in A. \end{cases}
$$

Claim 5.34. *Measures of the form*

$$
\sum_{i=1}^{n} c_i \delta_{x_i},
$$

where $c_i \in \mathbb{R}, x_i \in X$ *are weak*-dense in the set of all signed Baire measures.*

Remark 5.35. [Riesz-Markov correspondence] For a fixed *xⁱ* , there is a one-to-one correspondence between Baire measure δ_{x_i} and linear functional ℓ_{x_i} , where ℓ_{x_i} is defined by $\ell_{x_i}(f) = f(x_i)$. The correspondence is given by

$$
\ell_{x_i}(f) = \int f \, d\delta_{x_i}.
$$

Thus, any Baire measure μ on $\mathbb R$ can be approximated by linear combinations of point mass measures δ_{x_i} , *i.e.*,

$$
\mu \approx \sum_{i=1}^n c_i \delta_{x_i}.
$$

Correspondingly, for a continuous function *f*,

$$
f(x) d\mu \approx \int f(x) d\left(\sum_{i=1}^n c_i \delta x_i\right) = \sum_{i=1}^n c_i f(x_i).
$$

6 Ergodic Theory

Ergodic theory is about classical mechanics and dynamical systems. Suppose we have a phase space Ω of all possible states of a physical system, where Ω can be a metric or topological space.

For $t \geq 0, x \in \Omega$, define $T_t x$ to be the state of the system at state $x \in \Omega$ after time *t*, where $T_t : \Omega \to \Omega$. Assume T_t is invertible $\forall t$, and $T_t(x)$ is measurable in variables (t, x) jointly on $\mathbb{R} \times \Omega$ as a measure space using Borel measurable sets on $\mathbb R$ and Ω , respectively.

Let $E \geq 0$. We usually consider the subset $\Omega_E \subset \Omega$ consisting of all states in Ω with energy *E*. The system initially in Ω_E stays in Ω_E due to energy conservation. Suppose the initial state is *x*, and at time *t*, the state is $T_t x$. Does $T_t x$ have a limit as $t \to \infty$? Not usually. However, there is usually a density that the orbit has as it moves around Ω_E . Henceforth, WLOG, assume Ω_E is all of Ω since we are restricted in any case to $\Omega_E \forall t$.

Assume Ω is a compact, Hausdorff topological space. Let f be a continuous function on Ω . Does $f(T_t x)$ have a limiting density of values? Notice that the average value from time 0 to time *τ* is

$$
\frac{1}{\tau}\int_0^{\tau}f(T_tx)\,dt.
$$

Does this have a limit as $\tau \to \infty$ that is independent of x? If yes, this is called the zeroth law of thermodynamics. If this limit exists and is independent of *x*, define

$$
\ell(f) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(T_t x) dt.
$$

Note that we can easily check that $\ell(f)$ is a positive linear functional on $C(\Omega)$ and is bounded. Thus, by the Riesz-Markov theorem, there exists a Baire measure μ s.t. $\ell(f) = \int_{\Omega} f(x') d\mu(x')$. Thus, we have

$$
\lim_{\tau \to \infty} \frac{1}{\tau} f(T_t x) dt = \int_{\Omega} f(x') d\mu(x').
$$

Note that ${T_t}$ is a *one parameter group* of operators, *i.e.*, that it depends on a single parameter *t*, and that $T_t T_s x = T_{t+s} x$. This follows just by definition of T_t , since the effect of time *s* followed by effect of time *t* is the effect of time $s + t$. Then we can show that

$$
\int_{\Omega} f(x) d\mu(x) = \int_{\Omega} f(x) d(\mu \circ T_s^{-1})(x),
$$

where $\mu \circ T^{-1}$ is a new measure defined by $(\mu \circ T_s^{-1})(F) := \mu(T_s^{-1}F)$, so $\mu \circ T_s^{-1} = \mu$, *i.e.*, T_s is measure *preserving* w.r.t. the measure μ . Equivalently, μ is an invariant measure for *T*. Hence, if the limit $\lim_{T\to\infty} \frac{1}{\tau} \int_0^T f(T_t x) dt$ exists, then *T* has an invariant measure μ .

Now consider the converse question. If T_t has an invariant measure μ , does the above limit exist? We want to prove that $\ell(f)$ exists for $f \in C(\Omega)$. Define a new map U_t on $L^2(\Omega)$ by

$$
U_t f(x) = f(T_t x).
$$

Lemma 6.1 (Koopman's lemma). U_t *is a unitary map on* $L^2(\Omega)$ *, i.e., it preserves* L^2 *norms.*

Note that $U_{t+s} = U_t U_s$ again. Thus, if $n \in \mathbb{Z}$, then $U_n = U_{1+\cdots+1} = U_1^n$. Now replace the above question by a slightly simpler discrete problem by setting $\tau = N \in \mathbb{Z}$. Then,

$$
\frac{1}{\tau} \int_0^\tau U_t f(x) dt = \frac{1}{N} \int_0^\tau U_t f(x) dt
$$

$$
\approx \frac{1}{N} \sum_{m=0}^{N-1} U_m f(x).
$$

Does this limit as $n \to \infty$ exist?

For a linear operator $A : \mathcal{H} \to \mathcal{H}$, we define

$$
\operatorname{ran} A = \{ Ax \mid x \in \mathcal{H} \},\
$$

$$
\operatorname{ker} A = \{ x \mid Ax = 0 \}.
$$

Given a linear bounded operator A in a Hilbert space H , the *adjoint operator* A^* is uniquely defined by $\langle x, Ay \rangle = \langle A^*x, y \rangle.$

Lemma 6.2. *We have the following:*

- (a) If *U* is unitary, then $Uf = f$ iff $U^*f = f$.
- *(b) For any operator A*, $(\text{ran } A)^{\perp} = \text{ker } A^*$.

Remark 6.3. For a real finite-dimensional v.s. (as in linear algebra), statement (b) becomes $(\text{ran } A)^{\perp} =$ ker *A*[⊤].

Theorem 6.4 (Mean ergodic theorem, discrete version)**.** *Let U be a unitary operator on* H*. Let P be the orthogonal projection onto* $J = \{\psi \mid U\psi = \psi\}$, which implies $P^2 = P$ and $P(J) = J$. Then $\forall f \in \mathcal{H}$,

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} U_m f
$$

exists and equals P f.

Theorem 6.5 (Mean ergodic theorem, continuous version). Let $T_t(x)$ be a one parameter group of measure *preserving transformations of* (Ω, μ) *. Then for* $f \in L^2(\Omega)$ *,*

$$
\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(T_t w) dt = \int_0^1 (Pf)(T_t w) dt,
$$

where P is the orthogonal projection onto the subspace $\{\psi \mid U_1\psi = \psi\}$ *, and* U_1 *is the time one map* $U_1 f = f(T_1 w)$.

Let μ is a measure on set Ω and $T : \Omega \to \Omega$ be a transformation that preserves μ . We assume that μ is a probability measure for now, *i.e.*, $\mu(\Omega) = 1$.

For a single *t*, the map T_t is *ergodic* if $f \circ T_t = f$ implies that f is constant. The *family* $\{T_t\}_{t \geq 0}$ is ergodic if T_t is ergodic $\forall t$. This definition implies that T_1 mixes sets up.

Claim 6.6. *This means T*¹ *leaves no set A invariant if A is nontrivial, i.e., not of full or* 0 *measure. That is, we never have* $T_1A = A$ *.*

Proposition 6.7. T_t *is ergodic (for a fixed t) iff the only sets left invariant by* T_t *have measure* 0 *or measure* 1*.*

Corollary 6.8 (of the mean ergodic theorem). Let T_t be ergodic and measure preserving on (Ω, μ) . Then $\forall f \in L^2(\Omega, d\mu),$

$$
\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(T_t w) dt = \int_{\Omega} f(x) d\mu(x),
$$

i.e., the time average is equal to the space average.

Theorem 6.9 (Birkhoff ergodic theorem)**.** *Let T be a measure preserving transformation on a measure space* (Ω, μ) *(not necessarily finite). Then* $\forall f \in L^1(\Omega, \mu)$ *, the limit*

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) = f^{\#}(x) \in L^1(\mu)
$$

exists pointwise a.e. Further, $f^{\#}(x) = f^{\#}(Tx) \,\forall x \in \Omega$ *. If* $\mu(\Omega) < \infty$ *, then*

$$
\int f^{\#}(x) \, d\mu = \int f(x) \, d\mu.
$$

Furthermore, if T is ergodic and $\mu(\Omega) = 1$ *, then*

$$
f^{\#}(x) = \int f(y) \, d\mu(y)
$$

for almost all x.

7 Spaces of Bounded Operators

Let X, Y be Banach spaces. Let $\mathcal{L}(X, Y)$ be the set of all continuous linear maps from X to Y. Recall that if $T \in \mathcal{L}(X, Y)$, $||T|| = \sup_{x \in X} ||Tx||/||x||$, so $\mathcal{L}(X, Y)$ is a Banach space with this norm.

7.1 Topologies on Operator Spaces

Now let us consider topologies on $\mathcal{L}(X, Y)$. The normal topology on $\mathcal{L}(X, Y)$ is called the *uniform operator topology* (or the norm topology). Here, ${T_n} \rightarrow T$ iff $||T_n - T|| \rightarrow 0$.

There are two other topologies on $\mathcal{L}(X, Y)$. Let $x \in X$. Consider the map $E_x : \mathcal{L}(X, Y) \to Y$ defined by $E_x(T) = Tx$. The *strong operator topology* is the weakest topology on $\mathcal{L}(X, Y)$ s.t. all maps E_x are continuous from $\mathcal{L}(X, Y)$ to X in the norm topology on $\mathcal{L}(X, Y)$.

Remark 7.1. In the strong operator topology, the strongly convergent nets ${T_\alpha} \subset \mathcal{L}(X, Y)$ are those where ${T_\alpha x}$ converges $\forall x \in X$.

Let $x \in X, \ell \in Y^*$. Consider the map $E_{x,\ell} : \mathcal{L}(X, Y) \to \mathbb{C}$ defined by $E_{x,\ell}(T) = \ell(Tx) \in \mathbb{C}$. The weak *operator topology* on $\mathcal{L}(X, Y)$ is the weakest topology s.t. all maps of this form are continuous.

Remark 7.2. In the weak operator topology, the convergent nets ${T_\alpha}$ are those where $\ell(T_\alpha x)$ converges $\forall x \in X, \ell \in Y^*$.

Claim 7.3. *Weakest topology* ⊂ *strong topology* ⊂ *norm topology*.

Example 7.4. Suppose ℓ^2 are all sequences $\{a_n\}$ s.t. $(\sum a_n^2)^{1/2} = ||\{a_n\}||_2 < \infty$.

(a) Consider the operator $T_n(a_1, a_2, \dots) = \frac{1}{n}(a_1, a_2, \dots)$. Then

$$
||T_n|| = \sup_{a \in \ell^2} \frac{||T_n a||}{||a||} = \sup_{a \in \ell^2} \frac{||a/n||}{||a||} = \frac{1}{n} \to 0,
$$

so $||T_n - 0|| \to 0 \implies T_n \to 0$ in the norm topology (and thus in all the other topologies).

(b) Let $S_n(a_1, \ldots) = (0, \ldots, 0, a_{n+1}, a_{n+2}, \ldots)$. Then if $x = \{x_n\} \in \ell^2$,

$$
||S_n x||^2 = \sum_{i=n+1}^{\infty} |x_i|^2 \to 0,
$$

so $S_n x \to 0$ $\forall x \in \ell^2$, so $S_n \to 0$ as an operator from $\ell^2 \to \ell^1$ in the strong toplogy (and also the weak topology), but not the norm topology.

(c) Let $W_n: \ell^2 \to \ell^1$ be defined by $W_n(a_1, a_2, \ldots) = (0, \ldots, 0, a_1, a_2, \ldots)$ with *n* zeroes in the first position. Then if $x = (x_1, x_2, ...) \in \ell^2, \ell \in \ell^{2^*}, \ell(W_n x) = \ell(0, ..., 0, x_1, x_2, ...)$. Recall that ℓ^2 is a Hilbert space. We can show that $W_n \to 0$ in the weak operator topology.

Theorem 7.5. Let H be a Hilbert space. Let $T_n \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ $\forall n$. Suppose $\forall x, y \in \mathcal{H}$, we have that $\langle x, T_n y \rangle$ *converges as* $n \to \infty$ *. Then* $\exists T \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ *s.t.*

 $T_n \xrightarrow{w} T$,

where $\overset{w}{\rightarrow}$ *denotes weak convergence.*

7.2 Adjoint Operators

Let *X*, *Y* be Banach spaces and $T: X \to Y$ be linear and continuous. Define the *adjoint* operator $T': Y^* \to X^*$ by $(T'\ell)x = \ell(Tx)$. Note that we want to think of $T'\ell \in X^*$.

Example 7.6. Let us revisit the shift operator. Let $X = Y = \ell_1$ and $T(a_1, a_2, \ldots) = (0, a_1, a_2, \ldots)$. Then $T': \ell_1^* \to \ell_1^*,$ or $T': \ell_\infty \to \ell_\infty.$

Claim 7.7. *If* $b \in \ell_{\infty}, b = (b_1, b_2, \dots)$ *, then* $T'b = (b_2, b_3, \dots)$ *.*

Theorem 7.8. Let X, Y be Banach spaces. Then if $T : X \to Y$ is linear and bounded, the map $T \to T'$ *which takes T to its adjoint*

- *(i) linear,*
- *(ii) isometric, i.e.,* $||T|| = ||T'||$ *.*

Now suppose H is a Hilbert space. Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded linear operator. The *Hilbert space adjoint* of *T* is a bounded linear operator T^* s.t. $\forall x, y \in \mathcal{H}, \langle x, Ty \rangle = \langle T^*x, y \rangle$.

Recall that if $x \in \mathcal{H}, \exists \ell \in \mathcal{H}^*$ st. $\forall y \in \mathcal{H}, \langle x, y \rangle = \ell(y)$. Let C be the map defined by $x \mapsto \ell$, so $||x|| = ||\ell||$. If *x* is replaced by αx for $\alpha \in \mathbb{C}$, then ℓ is replaced by $\overline{\alpha}\ell$. Thus, $C(\alpha x) = \overline{\alpha}\ell = \overline{\alpha}C(x)$, so *C* is *conjugate linear*.

Remark 7.9. If $x, y \in \mathcal{H}, \ \langle T^*x, y \rangle = (C(T^*x))y$, while $\langle x, Ty \rangle = (Cx)(Ty) = (T'Cx)(y) \ \forall x, y \in \mathcal{H},$ so $CT^* = T'C$, so $T^* = C^{-1}T'C$. This is the relation between the Hilbert space adjoint and the regular adjoint operator.

If H is a Hilbert space, let $\mathcal{L}(\mathcal{H})$ be the bounded linear operators from H to H.

Theorem 7.10. *We have the following:*

- *(a)* $T \rightarrow T^*$ *is a conjugate linear isometric isomorphism of* \mathcal{L} *.*
- *(b)* For $S, T \in \mathcal{L}(\mathcal{H})$, define $ST = S \circ T$ to be the composition of *S* and *T*. Then $(ST)^* = T^*S^*$.
- (c) $(T^*)^* = T$ *.*
- *(d)* If the inverse map T^{-1} exists and is a bounded linear operator, then T^* also has a bounded inverse, *and*

$$
(T^*)^{-1} = (T^{-1})^*.
$$

- (e) The map $T \to T^*$ is continuous in the weak operator topology and the norm operator topology, but *not the strong operator topology.*
- (f) $||T^*T|| = ||T||^2$.

The operator $T: \mathcal{H} \to \mathcal{H}$ is *self-adjoint* if $T^* = T$.

7.3 Complex Analysis

Let $f: \mathbb{C} \to \mathbb{C}$. Suppose $\Gamma \subset \mathbb{C}$ is a curve from point *a* to point *b*. Suppose we mark of points $a =$ $z_0, z_1, \ldots, z_n = b$ and define $\Delta z_i = z_i - z_{i-1}$. Define the integral

$$
\int_{\Gamma} f(z) dz = \lim_{\substack{\Delta z_i \to 0 \\ n \to \infty}} \sum_{i=1}^{n} f(z_i) \Delta z_i.
$$

Note that the contour has an *orientation*.

A set $D \subset \mathbb{R}^n$ is *connected* if any two points in *D* can be connected by a broken line entirely inside of *D*. Suppose $D \subset \mathbb{C}$ is a connected open set. Then *f* is *analytic* (*differentiable*)) in D if $\forall z \in D$,

$$
f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
$$

exists, where $f'(z)$ is the *derivative* of $f(z)$.

Lemma 7.11 (Cauchy's formula). *Suppose* $f: D \to \mathbb{C}$ *is analytic. Let* $\Gamma \subset D$ *be a closed curve, oriented counterclockwise.* Let $z_0 \in \Gamma$. Then

$$
f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz.
$$

Let $f: D \to \mathbb{C}$ be analytic, and let $z_0 \in D$. Suppose $f^{(n)}$ is the *n*th derivative of f and let $a_n = f^{(n)}(z_0)/n!$. Then

$$
\sum_{n=0}^{\infty} a_n (z - z_0)^n = f(z)
$$

in the largest circular disk C about z_0 in which f can be extended as an analytic function. Conversely, every power series of the form

$$
\sum_{n=0}^{\infty} a_n (z - z_0)^n
$$

converges to an analytic function f inside some circular disk C about z_0 , and diverges outside C. The function *f* which is obtained cannot be extended as an analytic function to a larger concentric disk than *C*.

7.4 Banach-Valued Functions

Let $D \subset \mathbb{C}$ and *X* be a complex Banach space. The function $f: D \to X$ is *analytic* if

$$
f'(z) := \lim_{h \to \infty} \frac{f(z+h) - f(z)}{h}
$$

exists $\forall z \in D$, where the limit is in the topology of X.

Let $D \subset \mathbb{C}$, *X* be a Banach space, and $f: D \to X$. Then *f* is *weakly analytic* if $\forall \ell \in X^*$,

$$
\ell(f(z)) : D \to \mathbb{C}
$$

is an analytic function.

Lemma 7.12. *Let X be a Banach space. Then a sequence* $\{x_n\} \subset X$ *is Cauchy iff* $\forall \ell \in X^*$ *s.t.* $\|\ell\| \leq 1$ *,* $\{\ell(x_n)\}\$ is Cauchy uniformly in $\ell \in \overline{X}^*$.

Remark 7.13. Uniformly in ℓ means that $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall m, n > N, |\ell(x_n) - \ell(x_m)| < \varepsilon$, *independent of* ℓ .

Theorem 7.14. If $f: D \to X$ is weakly analytic, then f is strongly analytic.

7.5 The Spectrum of a Linear Operator

Let *X* be a Banach space. The operator $I: X \to X$ denotes the *identity:* $Ix = x \forall x \in X$. Define $\mathcal{L}(X)$ to be all bounded linear operators from $X \to X$.

Let $T: X \to X$ be bounded and linear and $\lambda \in \mathbb{C}$. Then λ is in the *resolvent set* of *T* if the operator $\lambda I - T$ has an inverse $(\lambda I - T)^{-1}$ which is bounded and linear. Let $\rho(T)$ denote the resolvent set of *T*. Let $R_{\lambda}(T) := (\lambda I - T)^{-1}$. We also write $(\lambda I - T)^{-1} = (\lambda - T)^{-1} = \frac{1}{\lambda - T}$.

The product *AB* of two operators *A, B* denotes their composition. Two operators *A, B commute* if *AB* = *BA*.

Lemma 7.15. *If the operator* $A \in \mathcal{L}(X)$ *has norm smaller than* 1*, then* $1/(1-A)$ *exists and*

$$
\frac{1}{1-A} = \sum_{k=0}^{\infty} A^k.
$$

Theorem 7.16. *Suppose T is a bounded linear operator. We have the following:*

- *(a)* $ρ(T) ⊂ ℂ$ *is open.*
- (b) For $\lambda \in \rho(T)$, $R_{\lambda}(T) = (\lambda T)^{-1}$ is an analytic function of λ , i.e., $R_{\lambda}(T) : \mathbb{C} \to \mathcal{L}(X)$ is an analytic *function of* λ *.*
- *(c) Further, for* $\lambda, \mu \in \mathbb{C}$ *,*

$$
R_{\lambda}(T) - R_{\mu}(T) = (\mu - \lambda)R_{\mu}(T)R_{\lambda}(T),
$$

 $and R_\lambda(T), R_\mu(T)$ *commute.*

Remark 7.17. If $X = \mathbb{R}^n$ and *T* is a matrix, then

$$
(\lambda I - T)^{-1} - (\mu I - T)^{-1} = (\mu - \lambda)(\mu I - T)^{-1}(\lambda I - T)^{-1}.
$$

The *spectrum* $\sigma(T)$ of the operator *T* is the set of $\lambda \in \mathbb{C}$ s.t. $R_{\lambda}(T)$ does not exist as a bounded operator, *i.e.*, $\sigma(T) = \mathbb{C} \setminus \rho(T)$.

Remark 7.18. By part (a) of Theorem [7.16,](#page-27-0) the spectrum of *T* is a closed set.

Let *X* be a Banach space. A function $f(\lambda): \mathbb{C} \to X$ is called *entire* if it is analytic $\forall \lambda \in \mathbb{C}$.

Theorem 7.19 (Liouville's theorem for Banach spaces). Let X be a Banach space. Let $f(\lambda): \mathbb{C} \to X$ *be entire. Then if* $f(\lambda)$ *is bounded, i.e., if* $||f(\lambda)|| \leq C \forall \lambda \in \mathbb{C}$ *, then* $f(\lambda)$ *is a constant, i.e.,* $\exists T \in X$ *s.t.* $f(\lambda) = T \,\forall \lambda \in \mathbb{C}$.

Corollary 7.20. *Let X be a Banach space,* $T \in \mathcal{L}(X)$ *. We have the following:*

- *(a) The spectrum* $\sigma(T)$ *is non-empty.*
- *(b) Further,* $\sigma(T) \subset D$ *, a closed disk of radius* $||T||$ *.*

Could it be possible that $\sigma(T) \subset D'$ a closed disk of radius $||T|| - \varepsilon$ for some $\varepsilon > 0$? The answer is no.

Define the *spectral radius* of *T* be $r(T) := \sup_{\lambda \in \sigma(T)} |\lambda|$ to be the largest distance of any point in $\sigma(T)$ from 0. Given an analytic function $f: \mathbb{C} \to \mathbb{C}$ and its power series about $a \in \mathbb{C}$:

$$
f(z) = \sum_{k=0}^{\infty} c_n (z - a)^n,
$$
\n(8)

its *radius of convergence* ρ is defined to be the smallest *r* s.t. the series in Equation [\(8\)](#page-27-1) converges for $|z - a| < r$.

Lemma 7.21. *Given an analytic function f with its Taylor series in Equation* [\(8\)](#page-27-1)*, the radius of convergence R satisfies*

$$
R = \limsup_{n \to \infty} |a_n|^{1/n}.
$$

Theorem 7.22. *We have the following.*

1. Given a Banach space X and bounded operator T on X, the spectral radius r(*T*) *is given by*

$$
r(T) := \lim_{n \to \infty} ||T^n||^{1/n} := ||T||.
$$

2. If X is a Hilbert space and T is self-adjoint, then

$$
r(T) := ||T||.
$$

Theorem 7.23. Let H be a Hilbert space and T be a bounded operator on H. Then $\sigma(T^*) = \overline{\sigma(T)} = {\overline{\lambda} \mid \lambda}$ $\lambda \in \sigma(T)$ *and* $R_{\overline{\lambda}}(T^*) = R_{\lambda}(T)^*$ *if* $\lambda \in \rho(T)$ *.*

7.6 Eigenvalues and the Point Spectrum

Let *T* be a bounded operator on a Banach space *X*. Suppose $\lambda \in C$, and for some $x \in X$, $Tx = \lambda x$. Then λ is an *eigenvalue* of *T*. If $\lambda \in \sigma(T)$ is an eigenvalue of *T*, then λ is in the *point spectrum* of *T*.

Remark 7.24. In finite dimensions, the point spectrum is always the entire spectrum. In general, the point spectrum is not the full spectrum. In infinite dimensions, there are additional points in the spectrum, *e.g.*, the "continuous spectrum" and the "residual spectrum." We will not focus so much on the residual spectrum.

Theorem 7.25. Let H be a Hilbert space. If $T : \mathcal{H} \to \mathcal{H}$ is self-adjoint, then

(a)
$$
\sigma(T) \subset \mathbb{R} \subset \mathbb{C}
$$
.

(b) If λ_1, λ_2 are eigenvalues and $Tx_1 = \lambda_1 x_1, Tx_2 = \lambda_2 x_2$, then $x_1 \perp x_2$.

7.7 Polar Decomposition

Let H be a Hilbert space. An operator $A \in \mathcal{L}(\mathcal{H})$ is *positive* if $\langle Ax, x \rangle = 0 \ \forall x \in \mathcal{H}$.

Proposition 7.26. *If A is positive, then A is self-adjoint.*

Lemma 7.27 (Square root lemma). Let H be a Hilbert space and $A \in \mathcal{L}(\mathcal{H})$ *s.t.* $A \geq 0$ *. Then* $\exists! B \in \mathcal{L}(\mathcal{H})$ *with* $B \geq 0$ *s.t.* $B^2 = A$ *. Further, the operator B commutes with every bounded operator that commutes with A.*

Let $A \in \mathcal{L}(\mathcal{H})$. Then define $|A| =$ √ *A*[∗]*A*.

If $T \in \mathcal{L}(\mathcal{H})$, the *kernel* of *T* is defined by ker $T := \{x \mid Tx = 0\}$. Let $U \in \mathcal{L}(\mathcal{H})$. Then *U* is an *isometry* if $||Ux|| = ||x|| \forall x \in \mathcal{H}$. *U* is a *partial isometry* if $||Ux|| = ||x|| \forall x \in (\ker U)^{\perp}$.

Remark 7.28. If $U: \mathcal{H} \to \mathcal{H}$ is a partial isometry, note that $\mathcal{H} = \ker U \oplus (\ker U)^{\perp}$ uniquely and $\mathcal{H} = \text{ran } U \oplus (\text{ran } U)^{\perp}$ uniquely.

Remark 7.29. Note that $\text{ran } U|_{(\text{ker } U)^{\perp}} = \text{ran } U$, so we can say $U : (\text{ker } U)^{\perp} \to \text{ran } U$.

Recall that for a $z \in \mathbb{C}$, we can write $z = re^{i\theta} = |z|e^{i\theta}$. Note that we can interpret z as as a multiplication operator M_z , that is if $h \in \mathcal{H}$, we define $M_z h = zh$. This also generalizes to more complicated operators:

Theorem 7.30 (Polar decomposition theorem). Let $A \in \mathcal{L}(\mathcal{H})$. Then there exists partial isometry U s.t. $A = U[A]$. *U* is unique if it is chosen so that ker $U = \text{ker } A$. Also, ran $U = \overline{\text{ran } A}$.

8 The Spectral Theorem

8.1 Functional Calculus

Let *H* be a complex Hilbert space. Let $A \in \mathcal{L}(\mathcal{H})$. Recall that $A^2 = A \circ A$, $A^3 = A \circ A \circ A$, etc. If $P(x) = \sum_{N} a_i x^i$ is a complex polynomial, $P(A) := \sum_{N} a_i A^i$ is an operator. Let $f(x)$ be a continuous function. Is $f(A)$ an operator as well?

The answer is yes! Use an approximation of $f(x)$ by $P(x)$. Note that $P(x) \approx f(x)$ is only needed on $\sigma(A)$.

Define $\phi : C(\sigma(A)) \to \mathcal{L}(\mathcal{H})$. We choose ϕ with the following properties:

- (a) ϕ is a *-homomorphism, i.e.
	- (i) $\phi(f + q) = \phi(f) + \phi(q)$,
	- (ii) $\phi(fg) = \phi(f)\phi(g)$,
	- (iii) $\phi(\lambda f) = \lambda \phi(f)$,
	- $(iv) \phi(1) = I$,
	- $(v) \phi(\overline{f}) = \phi(f)^*$.
- (b) ϕ is continuous from $C(\sigma(A))$ (in sup norm) to $\mathcal{L}(\mathcal{H})$ (in operator norm) for fixed A.
- (c) Let $f(x) = x$ on R. Then $\phi(f) = A$.]

Moreover, ϕ has the additional properties:

(d) If $A\psi = \lambda \psi$, then $\phi(f)\psi = f(\lambda)\psi$.

- (e) $\sigma[\phi(f)] = \{f(\lambda \mid \lambda \in \sigma(A)\}\)$ [spectral mapping theorem].
- (f) If $f > 0$, then $\phi(f) > 0$.
- (g) $\|\phi(f)\| = \|f\|_{\infty}$ [this strengthens (b)].

8.2 The Spectral Mapping Theorem

Lemma 8.1 (Spectral mapping theorem for polynomials). For a polynomial $P(x)$ and operator $A \in \mathcal{L}(\mathcal{H})$, *we have*

$$
\sigma(P(A)) = P(\sigma(A)) := \{ P(\lambda) \mid \lambda \in \sigma(A) \}.
$$

Lemma 8.2. *For a polynomial P,*

$$
||P(x)||_{C(\sigma(A))} = ||P(A)||_{\mathcal{L}(\mathcal{H})}.
$$

8.3 The Borel Functional Calculus

Again, consider a fixed bounded operator A. If $f : \mathbb{R} \to \mathbb{C}$ is Borel, can we define $f(A)$? This means we want the correspondence $\hat{\phi}: f \to f(A)$ which extends ϕ (which was defined only for continuous functions).

Theorem 8.3. *A unique correspondence* $\hat{\phi}$ *exists between Borel functions* $f(x)$ *and operators* $f(A)$ *and extends the correspondence* ϕ *above. Further, if we require that* $\hat{\phi}$ *satisfies the same three conditions* (*a*)-(*c*) as ϕ , and that if $f_n(x) \to f(x)$ $\forall x$, and $||f_n||_{\infty} \leq C$ $\forall n$, then $f_n(A) \to f(A)$ in the strong operator topology.

8.4 Spectral Measures

Let H be a complex Hilbert space and let $A \in \mathcal{L}(\mathcal{H})$ be a fixed self-adjoint operator. Then $\sigma(A) \subset \mathbb{R}$. Fix $\psi \in \mathcal{H}$, and flor each continuous function *f* on $\sigma(A)$, define $\ell(f) = \langle \psi, f(A)\psi \rangle$, which is a number. Here, *A*, ψ are *fixed* as *f* varies.

It is easy to show that if $f \ge 0$, then $f(x) = g^2(x)$ for some $g \ge 0$, so $\ell(f) = \langle \psi, g^2(A)\psi \rangle = \langle g(A)\psi, g(A)\psi \rangle \ge 0$. Hence, ℓ is a positive bounded linear functional on functions f on $\sigma(A)$. Then by the Riesz-Markov theorem, there exists a Baire measure μ_{ψ} on $\sigma(A)$ s.t.

$$
\ell(f) = \int_{\sigma(A)} f(x) \, d\mu_{\psi}.
$$

 μ_{ψ} is the *spectral measure* associated with ψ .

A vector $\psi \in \mathcal{H}$ is a *cyclic vector* for A if finite linear combinations of the elements $\{A^n\psi\}$ span \mathcal{H} , *i.e.*, finite combinations of vectors $A^n \psi$ are dense in \mathcal{H} .

Example 8.4. Let $\mathcal{H} = L^2[-1,1]$ and $A = M_x$, *i.e.*, $Af(x) = M_x f(x) = xf(x)$. Let $\psi = 1$. Then ${Aⁿ1} = {xⁿ}.$ The finite linear combinations of ${Aⁿ1}$ are thus polynomials, which are dense in *H*. Thus, the vector $\psi = 1$ is a cyclic vector for the operator $A = M_x$.

Claim 8.5. *If A has a cyclic vector* ψ *, then it is easy to describe A as an operator.*

Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces. Suppose $A_1 \in \mathcal{L}(\mathcal{H}_1), A_2 \in \mathcal{L}(\mathcal{H}_2)$. Suppose that there exists unitary operator $U: \mathcal{H}_1 \to \mathcal{H}_2$ and suppose $\forall x \in \mathcal{H}_2$, $A_2x = U A_1 U^{-1}x$, then A_1 and A_2 are *unitarily equivalent*.

Now let $\mathcal H$ be a Hilbert space and A be a self-adjoint operator on $\mathcal H$. Let ψ be a cyclic vector for A. Suppose μ_{ψ} is the corresponding measure on $\sigma(A)$. Consider $L^2(\sigma(A), \mu_{\psi})$ as a Hilbert space. Let A_1 be a self-adjoint bounded operator on $L^2(\sigma(A), \mu_{\psi})$ be defined by $(A_1 f)(x) = x f(x)$.

Lemma 8.6. *A* and A_1 are unitarily equivalent. That is, there exists unitary operator $U: \mathcal{H} \to L^2(\sigma(A))$ *s.t.* $UAU^{-1} = A_1$.

Lemma 8.7. Let H be a separable Hilbert space and $A \in \mathcal{L}(\mathcal{H})$ be self-adjoint and fixed. There exists *orthogonal subspaces* $\{\mathcal{H}_i\}_{i=1}^N$ *of* \mathcal{H} *(N may be* ∞ *) s.t.*

- *(i)* $\mathcal{H} = \bigoplus \mathcal{H}_i$ *.*
- *(ii) If* $\psi_i \in \mathcal{H}_i$ *, then* $A\psi_i \in \mathcal{H}_i$ *.*
- *(iii)* $\forall i$, consider $A|_{\mathcal{H}_i}$. This operator has a cyclic vector $\psi_i \in \mathcal{H}_i$, *i.e.*, finite linear combinations of ${A^n}\psi_i\}_{n=0}^{\infty}$ are dense in \mathcal{H}_i .

Combining the above information:

- 1. If *A* is self-adjoint on H with a cyclic vector ψ , then there is a measure μ on R (actually restricted $\mathfrak{to} \sigma(A) \subset \mathbb{R}$) s.t. $\mathcal{H} \leftrightarrow L^2(\mathbb{R}, \mu)$, *i.e.*, $\exists ! U : \mathcal{H} \rightarrow L^2(\mathbb{R}, \mu)$.
- 2. Under the unitary operator *U*, the operator *A* on H corresponds to M_x on $L^2(\mathbb{R}, \mu)$, *i.e.*, $UAU^{-1} =$ M_x .
- 3. If *A* is a general self-adjoint operator on H, then we can decompose H orthogonally: $\mathcal{H} = \bigoplus \mathcal{H}_n$ s.t. *A* maps each $\mathcal{H}_n \subset \mathcal{H}$ into itself and $A|_{\mathcal{H}_n}$ has a cyclic vector.

Conclusion: On \mathcal{H}_n , *A* has a cyclic vector ψ_n and so there is a corresponding measure μ_n on R with $\mathcal{H}_n \leftrightarrow L^2(\mathbb{R}, \mu_n)$, *i.e.*, each piece of *A* on each \mathcal{H}_n is like the operation of mulitplying a function in $L^2(\mathbb{R}, \mu_n)$ by *x*, with a corresponding measure μ_n . Combining all of this gives $A \leftrightarrow M_x$ acting on $\bigoplus L^2(\mathbb{R}, \mu_n)$.

But what is $\bigoplus L^2(\mathbb{R}, \mu_n)$? It is easy to show that $\bigoplus L^2(\mathbb{R}, \mu_n) = L^2(\cup(\mathbb{R}, \mu_n)$. So what kind of measure space is $M := \cup (\mathbb{R}, \mu_n)$?

M is a *simple union* of separate copies of R with different measures μ_n . Gluing them all together yields a single measure space. Thus, if $f(x)$ is a function on this measure space, it is defined (maybe differently) on each copy of \mathbb{R} . Thus, every self-adjoint *A* is equivalent to operator M_x on $L^2(\mathcal{M})$.

Remark 8.8. The equivalence still holds even if we replace μ_n by $c\mu_n$, where *c* is dependent on *n*.

The measures μ_n are *spectral measures* of A.

Example 8.9. Let H be a finite-dimensional space, A be self-adjoint on H. Then $H = \mathbb{C}^n$, and so A can be represented as a matrix. Let $\{\lambda_i\}$, $\{\psi_i\}$ be eigenvalues and eigenvectors of *A*. Then $\sigma(A) = \{\lambda_i\}$ is a finite set of points. Assume that all λ_i are unique. The spectral measure μ must be concentrated on the eigenvalues. Suppose μ is the counting measure on $\{\lambda_i\}$. Note that then we have

$$
\int_{\mathbb{R}} f(x) d\mu = \sum f(\lambda_i).
$$

Therefore, $\forall f(x) \in L^2(\mathbb{R}, \mu)$ is uniquely determined by its values on λ_i :

$$
f \leftrightarrow (f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)),
$$

i.e., $L^2(\mathbb{R}, d\mu) \sim \mathbb{C}^n = \mathcal{H}$. Further, *A* is equivalent to multiplication M_x on $L^2(\mathbb{R}, d\mu)$.

8.5 More on the Spectral Theorem

Lemma 8.10. On the space $L^2(\mathcal{M})$, the operator $M_{a(x)}$ with $a(x)$ essentially bounded is a bounded linear *operator. If* $a(x)$ *is essentially unbounded, then* $M_{a(x)}$ *is not bounded as an operator.*

Proposition 8.11. *Let* $A \approx M_x$ *on* $\bigoplus L^2(\mathbb{R}, \mu_n)$ *. Then* $\sigma(A) = \overline{\cup \operatorname{supp} \mu_n}$ *.*

Theorem 8.12. If A is self-adjoint on H, then $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$, where if $\psi \in H_{pp}$, then μ_{ψ} is a pure *point measure on* $\mathbb{R}, \psi \in \mathcal{H}_{ac}$, then μ_{ψ} is absolutely continuous on \mathbb{R} , and if $\psi \in \mathcal{H}_{sc}$, then μ_{ψ} is singular *continuous on* R*.*

8.6 Multiplicity: Free Operators

Recall if *A* is self-adjoint on H , then $A \sim M_x$ on M, which is the union of copies \mathbb{R}_n of \mathbb{R} with some measure μ_n . If H is finite-dimensional, then μ is always a point measure on M.

f $A ∼ M_x$ on some measure space M that is only one copy of R with some measure μ , then A is *multiplicity-free*.

Theorem 8.13. *The following are equivalent:*

- *(a) A is multiplicity-free,*
- *(b) A has a cyclic vector.*

Proposition 8.14. *Let µ, ν be Borel measures on* R *with bounded support. Let*

$$
A_{\mu} = M_x \quad on \ L^2(\mathbb{R}, \mu),
$$

$$
A_{\nu} = M_x \quad on \ L^2(\mathbb{R}, \nu).
$$

Then A_μ *and* A_ν *are unitarily equivalent iff* μ, ν *are equivalent measures.*

Let Ω be a Borel set in R. Let χ_{Ω} be the indicator function for Ω . If *A* is self-adjoint on *H*, then define (using functional calculus for operators) $P(\Omega) = \chi_{\Omega}(A)$, a *spectral projection* of A. By properties of functions of operators, we have

$$
P(\Omega)^2 = \chi^2_{\Omega}(A) = \chi_{\Omega}(A).
$$

Also,

$$
P(\Omega)^* = \overline{\chi}_{\Omega}(A) = \chi_{\Omega}(A) = P(\Omega),
$$

so $P(\Omega)$ is an orthogonal projection.

Proposition 8.15. *We have the following:*

- *(a) P*^Ω *is an orthogonal projection.*
- *(b)* $P(\phi) = 0$; $P(-a, a) = I$ *for a sufficiently large.*
- (c) *If* Ω = ∪_{m=1}Ω_{*m*} *with* Ω_{*m*} *disjoint, then*

$$
P_{\Omega} = \lim_{M \to \infty} \sum_{m=1}^{M} P(\Omega_m)
$$

in the strong operator topology.

 (d) $P(\Omega_1)P(\Omega_2) = P(\Omega_1 \cap \Omega_2)$.

If $\forall \Omega \subset \mathbb{R}$, $P(\Omega)$ is an orthogonal projection on H and properties (a)-(d) are satisfied, then P is a *projectionvalued measure*.

Suppose $\theta \in \mathcal{H}$ is fixed. Define a measure μ on \mathbb{R} by

$$
\mu(\Omega) = \langle \theta, P(\Omega)\theta \rangle.
$$

We can define an integral w.r.t. $P(\Omega)$:

Theorem 8.16. *If* P_{Ω} *is a projection-valued measure and* $f(x)$ *is a bounded Borel function on* \mathbb{R} *, there exists a* unique operator B *s.t.* $\forall \theta \in \mathcal{H}$,

$$
\langle \theta, B\theta \rangle = \int f(x) \, d\langle \theta, P(x)\theta \rangle.
$$

$$
B = \int f(x) \, dP(x)
$$

Define

$$
B = \int f(x) \, dP(x).
$$

We can show if $\{P(\Omega)\}\$ are projection-valued measures associated with *A*, then

$$
f(A) = \int_{\mathbb{R}} f(x) \, dP(x)
$$

s.t.

$$
A = \int_{\mathbb{R}} x \, dP(x).
$$

Theorem 8.17 (Spectral theorem)**.** *There is a one-to-one correspondence between self-adjoint operators A and projection-valued measure* $P(\Omega)$ *defined by* $\theta_1 : A \to \{P(\Omega)\}\$ *, a projection-valued measure defined by A* $and \ \theta_2 : \{P(\Omega)\} \to A = \int_{\mathbb{R}} x \, dP(x).$