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Abstract
This work covers the materials I learned from Boston University’s PhD class in financial
econometrics, EC794, taught by Professor Zhongjun Qu during Spring 2023. The class
covers theoretical and empirical topics on the efficient market hypothesis, asset pricing
(low- and high-frequency), capital asset pricing model, multifactor models (arbitrage pricing
theory, Fama-French), analysis of the stochastic discount factor, and continuous-time models
(Black-Scholes).
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1 Asset Return Predictability
The readings for this chapter are

• Campbell J.Y. 2014. “Empirical Asset Pricing: Eugene Fama, Lars Peter Hansen, and Robert Shiller.’
Scandinavian Journal of Economics. Sections 3, 4.

• Lewellen, J. 2004. “Predicting Returns with Financial Ratios.” Journal of Financial Economics 74,
209-235.

In this chapter, we focus on aggregate stock returns in the low-frequency setting, i.e., monthly and lower
frequency. We examine return predictability in the context of the efficient market hypothesis (EMH). Our
main econometric focus is valid inference for predictive regressions.

Let {Pt}T
1 be a sample of prices. Simple returns are calculated as rt+1 = Pt+1−Pt

Pt
, and continuously

compounded returns are calculated as rt+1 = logPt+1 − logPt.
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1.1 The Efficient Market Hypothesis
A market in which asset prices always fully reflect available information is called efficient. This is an informal
characterization of the efficient market hypothesis (EMH).

Let Pt+1 be the vector of payoffs at time t+1 (prices plus dividends and interest payments) on assets available
at time t, Ft be the information available at time t, f(Pt+1 | Ft) be the conditional distribution of Pt+1 at
t, Fmt be the information used in the market to set price Pt,1, f(Pt+1 | Fmt) be the distribution of Pt+1
implied by Fmt, and Rmt be the expected returns of t+ 1 implied by f(Pt+1 | Fmt) and Pt.

Note that f(Pt+1 | Fmt) depends on the assumed model of market equilibrium. This distribution is undefined
unless we specify a model.

The efficient market hypothesis that the prices at time t fully reflect available information is

f(Pt+1 | Ft) = f(Pt+1 | Fmt),

which implies rt+1 = Rmt+ut+1 and E[ut+1 | Ft] = 0, where rt+1 and Rmt can be either simple or continuously
compounded returns.

Remark 1.1. Efficiency means information efficiency. The EMH implies that it is impossible to make
economic profits by trading on the basis of Ft. This is potentially testable.

We want to test the hypothesis E[ut+1 | Ft] = 0 where ut+1 = rt+1 −Rmt. However, this isn’t immediately
testable because Rmt isn’t observed. We need a model of market equilibrium.

Example 1.2. If the equilibrium model is such that Rmt = constant, then the EMH implies E[rt+1 | Ft] =
constant. This is testable. However, if the test rejects, we don’t know whether the problem is an inefficient
market or a misspecified market equilibrium model.

In this example, the H0 is E[rt+1 | Ft] = constant. Let Ωt ⊊ Ft. Then H0 implies E[rt+1 | Ωt] = constant
due to the law of iterated expectations.

The literature has considered three types of tests for this hypothesis, weak form test, semi-strong form test,
and strong form test. We will focus on the semi-strong form test. In this test, Ωt includes information that is
publicly available, e.g., valuation ratios, announcements of annual earnings, stock splits, etc.

Remark 1.3. We can have three types of random walks.

I. pt = µ+ pt−1 + et, where et ∼ N (0, σ2) i.i.d.

II. pt = µ+ pt−1 + et, where et ∼ N (0, σ2
t ) n.i.d.2

III. Cov(et, et−k) = 0 for k ̸= 0.

1.2 Predictive Regressions and Empirical Findings
We test the semi-strong EMH hypothesis under the assumption Rmt = constant. This gives us the regression

rt+1 = α+ βXt + et+1

H0 : β = 0.

Fama and French (1988) ran regressions using horizons between 1 month and 4 years. On nominal CRSP
value-weighted NYSE portfolio returns on dividend yield from 1941 – 1986, they found that there appeared
to be strong evidence of predictability.

However, their data had three nonstandard features:

1. The sample size was small

2. The regressor was persistent

3. The errors are negatively correlated between the two equations

1Note that Fmt ⊂ Ft.
2n.i.d. stands for independent but not necessarily identical increments.
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Suppose that the return rt and the predictor xt satisfy

rt+1 = α+ xtβ + ut+1

xt+1 = (1− ρ)µ+ ρxt + vt+1

ut = γvt + et,

where 0 < ρ ≤ 1, ut and vt are martingale differences, E[u2
t ] = σ2

u, E[v2
t ] = σ2

v , E[u4
t ] <∞, E[v4

t ] <∞, γ < 0,
E[vtes] = E[etxs] = 0 ∀t, s.

Looking at the OLS estimate of β, we can derive E[β̂ − β] = γE[ρ̂− ρ]. In practice, ρ̂ is downward biased
because ρ is close to 1. Also note that γ < 0, so β̂ is upward biased in finite samples. Hence, we need to
account for this bias when conducting inference. Alternatively, we can look at the asymptotic distribution of
the t-statistic.

If we look at the asymptotic distribution of the t-statistic, we note that it is the weighted average of two
distributions, where one is ∼ N (0, 1) and the other is skewed with negative mean. Robust inference takes
these features of the t-statistic into account.

Empirical results show that predictability seems to be time varying. Data from 1940 – 1990 has higher
t-values than that from 1927 – 2009.

1.3 Conclusion
The statistical evidence shows that aggregate stock returns are weakly predictable.

The finding of predictability is NOT interpreted as a rejection of the EMH in the literature. Instead, it is
taken as evidence that the rationally expected returns (i.e., the equity premiums) are time-varying.

The EMH is a joint hypothesis. If the test rejects, we do not know whether the problem is an inefficient
market or a misspecifed model of market equilibrium.

2 Market Microstructure and High-Frequency Returns
The readings for this chapter are

• Roll, R. (1984). “A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market,”
Journal of Finance, 39, 1127-1139.

• Glosten, L.R. (1987). “Components of the Bid-Ask Spread and the Statistical Properties of Transac-
tion Prices,” Journal of Finance, 42, 1293-1307.

• Battalio and Schultz (2011). “Regulatory Uncertainty and Market Liquidity: The 2008 Short Sale
Ban’s Impact on Equity Option Markets,” Journal of Finance, 66, 2013-2053.

• Andersen and Bollerslev (1997), “Intraday Periodicity and Volatility Persistence in Financial Markets,”
Journal of Empirical Finance, Vol.4, No.2-3, pp.115-158.

In the last chapter, we took returns as the principal objects of interest without any reference to the institutional
structure in which there are determined. In particular, we have ignored that security prices are generally
denominated in fixed increments (ticks) and that transactions occur over uneven time intervals.

An analogy is going from Newtonian mechanics to quantum mechanics. In the low-frequency setting, returns
act in a continuous manner, but in our new setting, returns are no longer continuous.

In fact, the very process of trading can have important effects on the statistical properties of financial asset
prices. In this chapter, we will consider two models for the bid-ask spread to examine these effects. The first
model is a purely statistical model while the second model is an economic model. We will first analyze the
theoretical results, then look at empirical analysis.

2.1 Rolle’s Model
Market makers provide liquidity to the market. Each market maker offers two prices, a bid price Pa and an
ask price Pa simultaneously, with Pb < Pa.

Remark 2.1. The NYSE fact book (1994) reports that the spread was ≤ 0.25 in 90.8% of the NYSE bid-ask
quotes in 1994. As electronic trading proliferated, this spread has decreased but not gone to 0.
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Denote P ∗
t as the time t fundamental value of a security in a frictionless economy3, and let s be the bid-ask

spread, which we assume to be constant over time. Furthermore, assume there is only one transaction per
time. Then the observed market price Pt is assumed to satisfy

Pt = P ∗
t + It

s

2 ,where It =
{

+1 w.p. 1/2 (buyer-initiated),
−1 w.p. 1/2 (seller-initiated),

which implies ∆Pt = ∆P ∗
t + (It − It−1) s

2 . If the fundamental price P ∗
t is constant, then ∆Pt = (It − It−1) s

2 .
Consequently, we have the following statistical properties:

• Var [∆Pt] = s2/2, meaning the bid-ask spread generates volatility.
• Cov(∆Pt−1,∆Pt) = −s2/4, so the covariance depends only on s.
• Cor(∆Pt−1,∆Pt) = −1/2, meaning there is constant negative serial correlation.
• Cov(∆Pt−k,∆Pt) = 0 for k > 1, which has an MA(1) structure.

If P ∗
t changes over time and ∆P ∗

t+1 is stationary, serially uncorrelated, and independent of It, then the
covariance doesn’t change but the correlation becomes Cor(∆Pt−1,∆Pt) = −s2/4

(s2/2)+σ(∆P ∗
t ) . Inverting the

covariance formula, we obtain
s = 2

√
−Cov(∆Pt−1,∆Pt),

which gives us a way to estimate the spread.
Rolle found that estimates from weekly returns differ significantly from daily returns. The fundamental price
and the spread are linked due to asymmetrical information. Order arrivals convey information, which may
impact the fundamental price and the spread simultaneously.

2.2 Glosten’s Model
Let P ∗ be the full information price, i.e., the price that would result if everyone had access to all information.
Let P c denote the common information price, i.e., P c = E[P ∗ | Ω], where Ω denotes the common information.
P c is the best estimate of P ∗ using Ω.
Market makers have access to common information, while some investors may have private information.
Market makers need to protect themselves from investors when providing liquidity to the market.
Example 2.2. For example, in Rolle’s model, we assumed that the chance of buy and sell transactions are
equally likely. If many people are selling, this gives a market maker information. Hence, the market maker
can utilize this information, adjusting the price downward and increasing the spread.
We assume that all market makers use the following price updating rule:

α(x) = E[P ∗ | Ω ∪ {investor buys at price x}]
β(y) = E[P ∗ | Ω ∪ {investor sells at price x}],

where α, β are functions of x, y, respectively. These functions describe how common knowledge expectations
are updated in response at various possible ask and bid prices.4

Recall that Pa, Pb are the bid and ask prices the market maker offers. Then the market maker’s expected
profits in the above two situations equal

Pa − α(Pa)− Caβ(Pb)− Pb − Cb,

where Ca, Cb include order-processing and inventory components. Glosten takes them as exogenous.
Under risk neutrality, in equilibrium, the expected profit equals zero in each case due to competition between
market makers. Then these equations determine the equilibrium ask and bid prices.
Let Za, Zb ≥ 0 be the belief updating relative to P c:

Za = α(Pa)− P c, investor buys, revise price upward;
−Zb = β(Pb)− P c, investor sells, revise price downward.

3This means there are no transaction costs.
4Note that we can extend these functions to utilize other information as well.
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Then we have

Pa = P c + Za + Ca,

Pb = P c − Zb − Cb,

where the bid-ask spread is greater than the case without asymmetric information (Rolle’s model only has
Ca, Cb). Note that we can also estimate Za, Zb using data on Pa, Pb, P

c, Ca, Cb.
Let Pt be the price of the ith transaction, Ωt be the information immediately before the tth transaction, and
Ω+

t be the information immediately after the tth transaction, i.e., Ω+
t = Ωt∪{investor buys/sells at price Pt}.

We start with the identity Pt = Pt,aIa +Pt,bIb, where Ia, Ib are indicators for the transaction direction. Then
using math, we can show that Pt = P c

t + CtQt, where P c
t is the common information price immediately after

the trade, Ct =
{
Ca if investor buys,
Cb if investor sells , Qt =

{
+1 if investor buys,
−1 if investor sells .

Note that the expected fundamental price P c
t is correlated with the transaction direction Qt. This is the

most important difference from Rolle’s model.
Then the return is

∆Pt+1 = Pt+1 − Pt = At+1Qt+1 + et+1 + {Ct+1Qt+1 − CtQt},

where
• At+1 is Za or Zb.
• At+1Qt+1 is due to asymmetric information. It has a permanent effect on the price level, and it is

serially uncorrelated.
• The price jumps if a transaction reveals important information.
• et+1 is due to new information arrival between trades at t and t+ 1. It is common to all models of

price dynamics, and it is serially uncorrelated.
• Ct+1Qt+1 − CtQt is due to transaction costs, as in Rolle’s model. It introduces a negative serial

correlation to returns, with only transitory effects on price levels.
Assume that Za = Zb = α s

2 and Ca = Cb = (1−α) s
2 , where α is the percentage of the half-spread attributable

to adverse selection. Then we can show that ∆Pt+1 = α s
2Qt + s

2∆Qt+1 + et+1. We can use the restricted
OLS to estimate the model if transaction-level data are available.

2.3 Theoretical Conclusion
The current literature tends to separate bid-ask spreads into three components:

• The adverse selection component: compensates market makers for the losses they incur from trading
against better informed traders.

• The order processing costs component: the portion of the spreads that provide compensation to
market makers for the bookkeeping, exchange fees, overhead, and other direct costs of making
markets.

• The inventory holding cost component: compensate market makers for holding a non-zero inventory
position in the assets they trade (overnight).

Market microstructure is a crucial aspect to consider when analyzing high-frequency financial data, e.g.,
estimating volatility (spread) or estimating contemporaneous correlations between security prices (non-
synchronous trading).

2.4 An Interlude on Data Processing
The data is based on the Deutschemark-USD (DM-$) spot exchange rate, traded 24 hours a day, 7 days a
week. We will focus on mean, volatility, and autocorrelation.
The dataset has a short time stamp (Oct 1992 – Oct 1993). We will consider 5 minute intervals, where
exchange rate levels for each interval is determined by the weighted average between the preceding and
immediately following quotes.
We have a sample of 74,880 observations, i.e., rt,n with n ∈ [288], t ∈ [260].
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(a) Absolute returns for DM-$. (b) Autocorrelation for absolute returns for DM-$.

(c) 5-day autocorrelation of the absolute returns for DM-$. The size of the autocorrelations at
the daily frequencies decay slowly over the first four days, only to increase slightly at the fifth,
or weekly, frequency. This signals the presence of a minor day-of-the-week effect.

2.5 Intraday Periodicity (Seasonality)
Sample mean: 0.000175%, sample standard deviation: 0.047%, sample skewness: 0.367, sample kurtosis: 21.5.
Both skewness and kurtosis are highly statistically significant. The first order autocorrelation coefficient is
-0.04, which is highly statistically significant.

We use absolute returns as proxies for return volatility, shown in Figure 1a. The strong drop in volatility
between intervals 20 - 40 corresponds to lunch hours in Asian markets. Activity picks up when European
markets open (interval 84). Volatility declines slowly until European lunch hour (interval 138) before it
increases sharply when US markets open (interval 156).

Autocorrelation in the average returns resembles white noise after the first few lags. On the other hand,
autocorrelations for the absolute returns has a distorted U-shape, induced by the strong intraday pattern,
shown in Figure 1b. We also have the weekly autocorrelations in Figure 1c.

2.6 Model for Intraday Returns
Andersen and Bollerslev (1997) introduces the model

rt =
N∑

n=1
rt,n = σt

1
N1/2

N∑
n=1

snzt,n,

where rt is the daily continuously compounded return, N is the number of return intervals in a day, σt

is the stochastic component of day t’s volatility, sn is a deterministic intraday periodic component with
normalization N−1∑ sn = 1, and zt,n ∼ N (0, 1) are i.i.d.

We can examine whether formal time series modeling of volatility is affected by the intraday seasonality
by fitting MA(1)-GARCH(1, 1) models to high-frequency data using the aggregation of k time intervals
(k = 1, . . . 144). We find that α+ β varies a lot between the different time horizons. In particular, there is
high persistence (α+ β close to 1) in short intervals (< 30 minutes) and long intervals (> 2 hours).
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2.7 Estimating the Seasonality Component in Volatility
Now, we consider a generalized model, where st,n can depend on σt:

rt,n = E[rt,n] + σtst,n

N1/2 zt,n,

where the first term is small and st,n represents seasonality.
Our goal is to estimate st,n and obtain filtered results (rt,n−E[rt,n])/st,n. There are two approaches available:
series approximation and kernel estimation. We will focus on the first approach. The idea is that we
approximate the model using a Fourier series after applying a logarithmic transformation. This gives us a
better GARCH estimate where α+ β stays more consistent over different horizons.

2.8 Conclusion
The return distribution varies systematically within a trading day. Hence, we should not apply the GARCH
model to intraday data without filtering out the intraday periodicity. If intraday periodicity is constant over
time, then it has no effect on the formal econometric modeling of volatility at daily and lower frequencies,
otherwise it can complicate the analysis.

3 The Capital Asset Pricing Model
The readings for this chapter are

• Gibbons, M.R., Ross, S.A, and Shanken, J. 1989. A Test of the Efficiency of a Given Portfolio.
Econometrica 57, 1121-52.

• Lintner, J. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets, Review of Economics and Statistics, 47, 13-37.

Markowitz (1959) formulated the investor’s portfolio selection problem in terms of the returns’ means and
covariances. Sharpe (1964) and Lintner (1965) studied the equilibrium implications.

3.1 Portfolio Optimization
There are N risky assets of price 1, with a mean vector µ and covariance matrix Ω, where Ω is positive
definite. We assume that µ and Ω are known, i.e., with no estimation uncertainty.5 First, we consider a
setting with no riskfree asset.
We call a portfolio p the minimum-variance portfolio of all portfolios with mean return µp if its portfolio
weight vector solves

min
ω
ω′Ωω s.t. ω′µ = µp, ω

′1 = 1.

Theorem 3.1. The solution to the above constrained optimization problem is given by

ω = g + hµp, (1)

where g, h depend only on µ,Ω: g = 1
D [BΩ−11−AΩ−1µ], h = 1

D [CΩ−1µ−AΩ−11], with A = 1′Ω−1µ,B =
µ′Ω−1µ,C = 1′Ω−11, D = BC −A2.
Proposition 3.2. The efficient frontier has the following properties.

1. g is a minimum-variance portfolio with zero expected return.
Proof. Set µp in Equation (1) to zero.

2. g+h is a minimum-variance portfolio with expected return equal to 1. Also, h is an arbitrage portfolio,
i.e., its elements sum up to zero.
Proof. This is because the elements of g sum to 1.

3. The minimum-variance frontier can be generated from any two distinct minimum-variance portfolios.
Proof. Suppose ω1 = g + hµp1 , ω2 = g + hµp2 are two such portfolios. Let ω∗ = g + hµ∗ be an
arbitrary minimum-variance portfolio. If we choose λ s.t. it solves µ∗ = λµp1 + (1 − λ)µp2 , then
λω1 + (1− λ)ω2 generates ω∗.

5Note that this assumption cannot hold because µ and Ω change over time.
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4. Any portfolio of minimum-variance portfolios is also a minimum-variance portfolio.
Proof. This is because the resulting weight vector satisfies the optimal solution formula in Equation
(1).

5. Let p, r be two minimum-variance portfolios. Then the covariance of their returns is

Cov(Rp, Rr) = B −Aµp −Aµr + Cµpµr

D
. (2)

Proof. Let ωp, ωr be their respective weight vectors. Their returns’ covariance equals ω′
pΩωr. Next,

apply the expression Equation (1) to ωp, ωr.
6. There exists a global minimum-variance portfolio.

Proof. Let p = r and compute the minimum of Equation (2).
7. For each minimum-variance portfolio p, except the global minimum-variance portfolio, there exists a

minimum portfolio that has zero covariance with it. This portfolio is called the zero beta portfolio
w.r.t. p.
Proof. Set Equation (2) to zero and solve for the expected return µr.

8. Consider a regression of the return of any arbitrary portfolio (not necessarily efficient) on any
minimum-variance portfolio Rp (except the global minimum variance portfolio) and its zero beta
portfolio Rop:

Ra = β0 + β1Rop + β2Rp + ep.

Then the population regression coefficients satisfy:
β0 = 0

β1 = Cov(Rp, Ra)
σ2

p

β2 = Cov(Rop, Ra)
σ2

op

= 1− β2.

9. We have
E[Ra] = (1− β2)E[Rop] + β2E[Rp].

Proof. Consider the previous property and compute the expectation.
Remark 3.3. In the population regression coefficients of 8, β0 = 0 represents an arbitrage condition, i.e., a
free lunch doesn’t exist.
Now we assume there is an asset with a fixed return Rf . Draw a ray that passes Rf and an arbitrary point
Y on the efficient frontier. Any point on this ray corresponds to a portfolio consisting of Y and some amount
of the riskfree asset. All assets that consist of a nonnegative amount of Y and some riskfree asset are on the
ray that passes through Rf and Y . This is shown in Figure 2.
Now consider the problem

min
ω
ω′Ωω s.t. ω′µ+ (1− ω′1)Rf = µp.

Theorem 3.4. The solution to the above minimization problem is

ω = µp −Rf

(µ−Rf 1)′Ω−1(µ−Rf 1)Ω−1(µ−Rf 1) = cpω,

where cp = µp−Rf

(µ−Rf 1)′Ω−1(µ−Rf 1) is a scalar, and ω = Ω−1(µ−Rf 1) is a portfolio weight vector that does not
depend on p.
Therefore, all minimum-variance portfolios are a combination of the riskfree asset and a particular risky asset
portfolio with weights proportional to ω. The latter portfolio is called the tangent portfolio.
Recall that the Sharpe ratio of a portfolio p, with expected return µp and standard deviation σp, is defined as

µp −Rf

σp
.
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Figure 2: The efficient frontier is the curved line. Note that all points to the right of the line are feasible, but
not efficient while all points the left of the line are infeasible (in the context of no riskfree asset).

The Sharpe ratio can be interpreted as the price for a single unit of risk.
The tangent portfolio X has the highest Sharpe ratio among all portfolios of risky assets. This maximum
Sharpe ratio is equal to

[(µ−Rf 1)′Ω−1(µ−Rf 1)]1/2.

For any asset or portfolio that is included in X, we must have
E[Ra −Rf ] = βE[RX −Rf ],

where β = Cov(RX ,Ra)
σ2

X

.

This result implies that if any asset in X is found to have a positive α w.r.t. X, then X cannot be the tangent
portfolio. This property is very useful for testing portfolio efficiency:
Suppose we want to test whether a risky asset portfolio p is efficient, where p consists of N assets and the
riskfree return is Rf . Let Rpt be the excess return on p and Rt be the vector of excess returns on the N
assets. Consider the following system of regressions

Rt = α+ βRpt + et.

Under the null hypothesis, Rpt is mean-variance efficient, and thus H0 : α = 0.
All results so far are mathematical facts. In other words, there is no theory that can be tested using data. To
derive a testable theory about the market equilibrium, we need to make assumptions about investors’ risk
preferences and the characteristics of the market.
The CAPM model makes such assumptions. Its main result shows that the tangent and market portfolios are
equivalent. This result also shows that a mean-variance optimizer can’t do better than simply “holding the
market,” so there is no need to compute any optimal portfolio.

3.2 CAPM and Its Testable Implications
Market Assumptions:

• Each individual investor can invest any part of his capital in certain riskfree assets, all of which pay
interest at a common positive rate, exogenously determined.

• She can invest any fraction of her capital in any or all of a given finite set of risky securities.
• Risky securities are traded in a single purely competitive market, free of transaction costs and taxes.
• Any investor may borrow funds to invest at the riskfree rate. There is no limit on the amount she

can borrow at this rate.
• She makes all transactions at discrete points in time.6

Investor Assumptions:
• Each investor has a fixed amount of capital for investment in riskless and risky assets after optimal

cash holdings have been deducted.
6This condition is critical.
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• She will have assigned a joint probability distribution on all individual stocks. All expected values of
returns are finite, all variances are non-zero and finite, and the covariance matrix is positive-definite.7

• If any two mixtures of assets have the same expected return, the investor will prefer the one having
the smaller variance of return, and if any two mixtures of assets have the same variance of returns,
she will, prefer the one having the greater expected value.

Theorem 3.5. Under the above assumptions, for any investor, the optimal composition of the risky assets is
independent of the division of capital between risky and riskless assets.
Thus, under the stated assumptions, all investors will make identical decisions regarding the proportionate
composition of his stock portfolio. Only a single point on the Markowitz efficient frontier is relevant to the
investor’s decision regarding his investments in risky assets.
Remark 3.6. This leads to a question: why would we utilize hedge funds or investment banks? Alternatively,
we can view that our models are inadequate.
The idealized uncertainty assumption states that for any given set of market prices, all investors assign
identical sets of means, variances, and covariances to the joint distribution of the returns.
We will use (rm, σm) to denote the mean and the standard deviation of the market portfolio. Recall that the
market portfolio weights are the capitalization weights, i.e., wk is the kth asset’s total capital value divided
by the total capital value of all assets (for a stock this would be the total number of outstanding shares
multiplied by the share price).
Theorem 3.7. Under the above assumptions, including idealized uncertainty and with Rf < A/C:

1. The tangent portfolio coincides with the market portfolio.
2. For any given portfolio a, we must have E[Ra −Rf ] = βE[Rm −Rf ], where β = Cov(Rm, Ra)/σ2

m.
This implies that for any portfolio, E[Ra −Rf ]/Cov(Rm, Ra) = constant.

CAPM Implications:
1. The market portfolio of invested wealth is mean-variance efficient. The market portfolio has the

highest Sharpe ratio.
2. All investors make identical decisions regarding the proportionate composition of his stock portfolio.
3. In a cross-section regression of excess asset returns on their market betas, the intercept should be zero

and the slope should be positive and equal to the expected excess returns on the market portfolio.
4. Market betas are sufficient to describe the cross section of expected returns.

3.3 Time Series Approach to Testing Implication 1
Let Rmt represent the excess returns on the market portfolio. Suppose there are N = 10 test assets with
excess returns summarized by the vector Rt. Consider the following regression system Rt = α+ βRmt + et.
Under the CAPM, the market portfolio is efficient, therefore H0 : α = 0 and the alternative hypothesis is
H1 : α ̸= 0. Assume et are stationary and uncorrelated over time, with E[ete

′
t] = Σ.

Gibbons-Ross-Shanken (1989) proposed to test H0 using “Hotelling’s T 2 test,” a multivariate generalization
of the univariate t-test. The OLS is equivalent to the Gaussian MLE:

β̂ =
∑T

t=1(Rmt −Rm)(Rt −R)∑T
t=1(Rmt −Rm)2

,

α̂ = R− β̂Rm,

where R = T−1∑Rt and Rm = T−1∑Rmt. Then we can do the following decomposition:
√
T α̂ =

√
T (R− βRm)−

√
T (β̂ − β)Rm.

Then under H0,
√
T α̂

d−→ N (0, V ), where V =
[
1 + E2[Rmt]

Var[Rmt]

]
Σ. Then it is feasible to form a quadratic form

in α̂ to test H0. This leads to

GRS =
(
T − (N + 1)

N

)[
1 + (Rm)2

T−1∑T
t=1(Rmt −Rm)2

]−1

α̂′Σ̂−1α̂,

7This condition results in a unique portfolio.
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where Σ̂ = T−1∑T
t=1 êtê

′
t, êt is the OLS residuals, and (N + 1) is a finite sample correction because the

variance is estimated. If the data are normally distributed, then α̂ and T Σ̂ will have normal and Wishart
distributions, respectively. As a result, GRS ∼ FN,T −(N+1). Without normality, GRS d−→ χ2

N/N .

3.4 Cross Sectional Approach to Testing Implication 3
Suppose there are N portfolios, i = 1, . . . , N , with excess returns Ri − Rf , and their market betas are
unknown. Consider the following regression of Ri on βi: Ri −Rf = µ+ γβi + ei. Implication 3 implies that
for any t, µ = 0 and γ = E[Rm −Rf ].
In practice, the betas are unknown, but they can be estimated using time series regressions. This approach
leads to the two-pass regressions in Black-Jensen-Scholes (1972):

1. At the beginning of January of each year, estimate the β’s of the NYSE stocks by Rj,t − Rf =
αj + βj(Rm,t −Rf ) + vj,t using monthly returns for the past five years.

2. Form ten portfolios based on the estimated β’s. The first portfolio has the 10% of the stocks with
the lowest estimated β’s, etc.

3. The return in each of the next 12 months for reach of the ten portfolios is calculated.
4. Repeat Steps 1 and 2 each year for the entire sample period.
5. Estimate the β’s of the ten constructed portfolios using the time series regression in Step 1.

6. Estimate the cross section regression Ri −Rf = µ+ γβ̂i + ei (i = 1, . . . , 10) and test the restrictions
µ = 0 and γ = E[Rm −Rf ] using the t-statistic.

Empirically, they reported t-values of 6.52 for the intercept and 6.53 for the slope coefficient relative to the
observed excess return on the market portfolio, rejecting the CAPM. The standard errors for the t-statistic
do not account for the estimation uncertainty in β̂i.

3.5 Asymptotic Distribution of the Two-Stage Cross Sectional Regression Estimator
Now we look at a more general setting that also can be used to study multifactor models. We have N portfolios
returns observed for T periods: Ri,t, i = 1, . . . , N, t = 1, . . . , T , where T ≪ N , e.g., N = 25, T = 200. Ri,t is
assumed to be a linear function of k factors:

Ri,t = αi + β1if1t + · · ·+ βkifkt + ui,t

= αi +B′
iFt + ui,t.

Note the special case where k = 1 and ft is the return on the market portfolio. Our goal is to test the factor
model, with CAPM being a special case. Let Zi be variables such as portfolio characteristics, e.g., firm size,
introduced to test the model.

1. Run N independent time series to estimate Bi: Ri,t = αi +B′
iFt + ui,t.

2. Estimate a single cross sectional regression Ri = ρ+ B̂′
iλ+ Z ′

iγ + ei, where Ri = 1
T

∑T
t=1 Rit. This

can be estimated via OLS or GLS, and we will focus on OLS.
Under both the null and the alternative hypothesis, E[Ri] = ρ+B′

iλ+ Z ′
iγ. Under the null hypothesis, Bi

adequately describes asset returns, therefore γ = 0. Furthermore, in the CAPM case, λ should equal the
expected return on the market portfolio.

We derive the asymptotic distributions of ρ̂, λ̂, γ̂ under the null hypothesis. This will allow us to test, for
example, γ = 0.

Let 1 = [1]N×1, Z = [Z ′
i]N×q, B̂ = [B̂′

i]N×k, R = [Ri]N×1, and X̂ = (1, Z, B̂). Then θ̂ = (ρ̂, γ̂, λ̂)′ =
(X̂ ′X̂)−1X̂ ′R. To relate this estimate to its true value, let X = (1, Z,B), θ = (ρ, γ, λ)′.
We can show that

√
T (θ̂ − θ) = (X̂ ′X̂)−1X̂ ′

√
T [R− E[R]]− (X̂ ′X̂)−1X̂ ′

√
T [B̂ −B]λ

= (I)− (II),

where term (I) accounts for the effect of estimating the expected return and term (II) accounts for the effect
of estimating B. Both of these terms are normally distributed by the CLT.
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3.5.1 Asymptotic Distribution with Conditionally Uncorrelated Homoskedastic Errors
This follows the work of Shanken 1992. We have the two assumptions:

1. Assume E[ut | F ] = 0, E[utu
′
t | F ] = Σu, and E[utu

′
t+s | F ] = 0 for s ̸= 0, where F is the information

set generated by the entire factor sequence and Σm is an N ×N PSD matrix.
2. The factors Ft are stationary with finite fourth moments, satisfying

1
T

T∑
t=1

(Ft − E[Ft])′(Ft − E[Ft])
p−→ ΣF0 ,

1√
T

T∑
t=1

(Ft − E[Ft])
d−→ N (0,ΣF ),

where ΣF =
∑∞

k=−∞ E[Ft − E[Ft]](Ft+k − E[Ft+k])′.
Theorem 3.8. Under Assumptions 1 and 2, as T →∞ and N fixed,

√
T (θ̂ − θ) d−→ N (0,Σc),

where Σc = Σ∗
F + (1 + λ′Σ−1

F0
λ)DΣuD

′,Σ∗
F =

[
0 0
0 ΣF

]
, D = (X ′X)−1X ′.

3.5.2 Asymptotic Distribution Allowing for Serial Correlation and Heteroskedasticity
This follows the work of Jagannathan et al., 2009. We have the assumption:

1. Let ht = ((h(1)
t )′, (h(2)

t )′)′. Assume that the CLT applies to the random sequence ht, that is

1√
T

T∑
t=1

ht
d−→ N (0,Σh)

with
Σh =

[
Ψ Γ
Γ′ Π

]
,

where Ψ =
∑∞

k=−∞ E[(h(1)
t )(h(1)

t+k)′],Π =
∑∞

k=∞ E[(h(2)
t )(h(2)

t+k)′],Γ =
∑∞

k=−∞ E[(h(1)
t )(h(2)

t+k)′].
Theorem 3.9. Suppose X has full rank. Under Assumption 1, as T →∞ and N fixed,

√
T (θ̂ − θ) d−→ N (0,Σc),

where Σc = D[Ψ + Π− (Γ + Γ′)D′], D = (X ′X)−1X ′.
For a given set of testing assets, one can always come up with a one factor model, using the mean-variance
efficient portfolio as the factor, to fit the data. So the real question is whether the CAPM restrictions hold ex
ante as well as ex post.
For testing, using more assets can reveal larger deviations from the model. However, this also increases the
size of the deviations required to reject the model. Some ways of grouping of assets into portfolios are often
desirable.

4 Multifactor Pricing Models
Ross (1976) argued that the apparent empirical success of the CAPM (at that time) is due to three assumptions,
which are more plausible than the assumptions needed to derive the CAPM. These assumptions are:

(i) there are many assets;
(ii) the market permits no arbitrage opportunities;
(iii) asset returns have a factor structure with a small number of factors

Ross showed that under these three assumptions, expected asset returns are (approximately) a linear function
of the factor loadings.
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4.1 Arbitrage Pricing Theory (APT)
Assume there are N assets, with prices all normalized to 1. Assume their returns are linear functions of a
common factor (we will allow for multiple factors later). Then we have Ri = αi + βiF + ei, where F is a
common factor with E[|F |] <∞,E[ei] = 0, the ei are sufficiently independent s.t. 1/N

∑
ei

p−→ 0,E[eiF ] = 0.
In matrix form, we have

R = α+ βF + e.

We construct the model as follows:
1. Construct an arbitrage portfolio using a weight vector η. By construction, the portfolio return is η′R

and η′1 = 0. We require this portfolio to be well-diversified, i.e., ηi = O(1/N) ∀i.
2. By the LLN,

η′R = η′α+ (η′β)F + η′e
p−→ η′α+ (η′)β)F as N →∞,

i.e., the influence on the well-diversified portfolio of the independent noise terms becomes negligible.
3. Further, we require that this portfolio has no systematic risk, i.e., η′β = 0. Then η′R ≈ η′α.
4. Because η is an arbitrage portfolio and it is approximately riskfree, to prevent arbitrarily large

disequilibrium positions, we must have η′α ≈ 0.
5. Since the above equation must hold for any portfolio η s.t. η′β = η′1 = 0, α must belong to the

vector space spanned by 1 and β, that is, ∃ρ, δ ∈ R s.t.

α ≈ ρ1 + βδ.

Note that this means α is in a 2-dimensional vector space.
6. Let µ = E[R] = α+ βE[F ], then µ ≈ ρ1 + β[δ + E[F ]] := ρ1 + βλ. Therefore, the expected returns

are approximately a linear function of the factor loading; explicitly,µ1
...
µN

 ≈ ρ
1

...
1

+ λ

β1
...
βN

 .
In practice, the pricing errors are often ignored: µ = ρ1 + βλ.

If the market includes a riskfree asset, then ρ equals the riskfree rate. If the factor is a portfolio of traded
assets with expected return µF , then µF = ρ + λ, which implies µ − ρ = β(µF − ρ). This is the same
prediction as the CAPM, where µF is the expected return on the market portfolio.
The assumptions of APT and CAPM are non-nested. The APT assumes: (i) asset returns have a factor
structure, (ii) investors know the factor loadings, and (iii) N →∞. CAPM assumes: (i) investors engage in
mean-variance optimization, (ii) investors know the first two moments of the assets, and (iii) N is finite.
Now suppose there are K factors with K ≪ N . Assume their returns are linear functions of K common
factors:

Rit = αi +B′
iFt + eit,

where

Bi =

βi1
...

βiK

 , Ft =

 f1t

...
fKt

 .
Using the same argument as in the K = 1 case, we can obtain αi = ρ + B′

iδK for some δi, ∀i and
E[Rit] = µi = ρ+B′

iλK ∀i, with λK = δK + E[Ft].
If the factors are portfolios of traded assets, then λK is a K × 1 vector of factor risk premiums. Then we have

E[F ] = µF = ρ+ λK ,

which implies λK = µF − ρ, δK = −ρ1.
The APT is often viewed as a generalization of the CAPM, where K factors are used to model the cross
sectional distribution of expected returns.
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4.1.1 Estimation and Testing
A complete description of the APT consists of two equations:

Rit = αi +B′
iFt + eit,

µi = ρ+B′
iλK .

The first equation is an assumption for the DGP, i.e., the returns have a linear factor structure with a small
number of factors. The second equation is the theory’s prediction, i.e., the expected returns are a linear
function of factor loadings. Any test of the APT is always a joint test of both. If the test rejects, we don’t
know whether it is because the theory’s prediction is off or because we have misspecified the factors, either
their number or their identity.

The testing of APT depends on how the factors are specified:

1. Factors are portfolios of traded assets and there exists a riskfree asset;

2. Factors are traded portfolios of traded assets and there is no riskfree asset;

3. Factors are not portfolios of traded assets, e.g., inflation rate.

We focus on the first case because it is the most relevant case empirically.

Let ρ = Rf (because there is a riskfree asset) and µF = Rf + λK (because factors are portfolios). These
equations imply

µi −Rf = B′
i(µF −Rf ).

Therefore, for the time series regression

Rit −Rf = δi +B′
i(Ft −Rf ) + eit,

we must have δi = 0 ∀i. We can estimate the regressions for each i and then apply the t-test to test δi = 0,
but this suffers from the multiple testing problem.

Alternatively, we can estimate the regressions as a system for all i, and apply the GRS test to check
H0 : δ1 = δ2 = · · · = δn = 0. Under an i.i.d. normality assumption, GRS ∼ FN,T −K−N .

Without normality assumptions, we need to make two assumptions:

1. E[etes] = 0 ∀t ̸= s,E[ete
′
t = Σ] where Σ is positive definite, E[|et∥4] <∞, and E[Xte

′
s] = 0 ∀t, s.

2. The excess returns on factors are stationary with finite fourth moments, s.t. 1/T
∑

(Xt−X)(Xt−X)′

converges to a positive definite matrix in probability.

Theorem 4.1. Under the null hypothesis and Assumptions 1 and 2, with N finite and T →∞, GRS d←− χ2
N/N .

Remark 4.2. Because the FN,T −K−N has a critical values than χ2
N/N , using the former provides more

conservative inference. Hence, if someone uses the F distribution, she is not necessarily assuming normality.

4.1.2 Empirical Findings: Fama and French (1993) and More
This section is based on the paper “Common Risk Factors in the Returns on Stocks and Bonds” (Fama and
French, Journal of Financial Economics, 1993).

The market betas are insufficient to describe the cross section of average returns on U.S. common stocks. At
the same time, variables that have no special standing in asset-pricing theory show reliable power to explain
the cross-section of average returns. The list of empirically determined average-return variables including,
size, leverage, earnings/price, book-to-market equity, etc.

The paper constructs two portfolios using U.S. common stocks based on the size and book-to-market equity
ratio. It then uses these portfolios as proxies to risk factors to explain the cross section average returns. The
main regression is

Rit −RFt = αi + βi(Rmt −RFt) + siSMBt + hiHMLt + eit,

where Rit is the return on asset i at time t, RFt is the riskfree rate, Rmt is the return on a proxy to the
market portfolio, SMBt is the return on the size factor, HMLt is the return on the book-to-market factor.

Remark 4.3. Using just the market portfolio, the R2 of the regression is approximately 60-70%.
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In the paper, the median NYSE size is used to split NYSE, Amex, and NASDAQ stocks into two groups:
small and big (S, B). These stocks are then divided into three book-to-market equity groups based on the
breakpoints for the bottom 30% (L), middle 40% (M), and top 30% (H) of the ranked values. Then six
portfolios (S/L, S/M, ...) are constructed from the intersection of the two ME and the three BE/ME groups.
The SMB factor is meant to mimic the risk factor in returns relative to size. It is computed as the difference
between the simple average of the returns on the three small-stock portfolios and the simple average of the
returns on the big-stock portfolios. There are two ways to interpret the return on the SMB factor: the return
on an arbitrage portfolio that goes long the small and goes short the large firms or the difference in returns
of two portfolios, one holding small firms and the other big firms.
The factor HML is meant to mimic the risk factor in returns related to book-to-market equity. It is the
difference between the simple average of the returns on the two high BE/ME portfolios and the average of
the returns on the two low BE/ME portfolios.
The average value of market factor is 0.43% per month. This is large from an investment perspective (about
5% a year). The average SMB return is 0.27% per month (t = 1.73), and the average HML return is 0.43%
per month (t = 2.91). Empirically, the three factor model captures strong common variations in stock returns.
The R2 becomes 90-99%.
4.1.3 Recent Developments
Carhart (1997) proposes a momentum factor to explain mutual fund returns. Using a sample free of survivor
bias, the paper demonstrates that common factors in stock returns and investment expenses almost completely
explain persistence in equity mutual funds’ mean and risk-adjusted returns. As a result, mutual funds only
beat the market by luck.
Lettau and Ludvigson (2001) explores the ability of conditional versions of the CAPM and the consumption
CAPM-jointly the (C)CAPM to explain the cross section of average stock returns. They use the log
consumption/wealth ratio as a conditional variable. Their new factor, called “Cay,” is the difference between
log consumption and a weighted average of log asset wealth and log labor income.
Fama and French (2015) proposed a five factor model by adding profitability and investment factors to the
three-factor model. The new factors are RMWt, the difference between the returns on diversified portfolios
of stocks with robust and weak profitability, and CMAt, the difference between the returns on diversified
portfolios of the stocks of low and high investment firms, which they call conservative and aggressive. They
find that with the addition of these factors, the HML factor becomes redundant.
Multifactor models provide a framework to describe the cross sectional correlation of average stock returns.
The testing of multifactor models faces a joint hypothesis problem. A natural approach is to run time-series
regressions and apply the GRS test.

4.2 Factor Models
The first factor model was developed by Spearman (1904) to test the general intelligence factor, or “g” factor.
The model is

Xi = µ+ Λfi + ei,

where Xi is individual i’s test scores, and N × 1 vector with N tests, µ is the average test scores of all
individuals, fi is a factor score of individual i, i.e., the “g” factor, Λ is the factor loading, an N × 1 vector,
common across individuals, and ei is the error term, i.i.d. across individuals and test subjects.
fi is a latent variable, i.e., there are no operations and criteria for directly measuring it. Because fi explains
the correlations among tests, if we partial it out, the covariances should all equal zero:

Var [Xt]− E[ΛΛ′f2
i ] = Diagonal Matrix.

Some other examples include the APT, term structure models, i.e., zero-coupon bonds of different maturities,
and recommendation systems, i.e., Amazon and Netflix.
4.2.1 Classical Factor Models: Identification and Estimation
The classic factor model is

Xt = µ+ ΛFt + et,

where Xt is an N × 1 vector, µ is the mean of Xt, Ft is the factor score, a k × 1 vector with mean zero, Λ is
the factor loading matrix, E[et] = 0, E[Fte

′
t] = 0, and et are independent in i and t: E[ete

′
t] = Ψ is diagonal

and E[ete
′
s] = 0 ∀t ̸= s.
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Remark 4.4. Approximate factor models generalize the above model to allow E[etes] to be small but not
nonzero and Ψ to be approximately diagonal but not exactly diagonal.
Identification of the model is based on the covariance of Xt:

Var [Xt] = Σ = E[ΛFtF
′
tΛ′] + Ψ.

However, these equations do not separately identify Λ and Ft, since for any k × k non-singular matrix
P , we always have (ΛP )(P−1Ft) = ΛFt. Thus, Λ and Ft are observationally equivalent to Λ∗ = ΛP and
F ∗

t = P−1Ft.
The following identification restrictions are often used to identify Λ and Ft:

• (R1) E[FtF
′
t ] = I, i.e., the factors are orthogonal.

• (R2) Γ = Λ′Ψ−1Λ is diagonal.
Under (R1), the covariance equation reduces to Var [Xt] = Σ = ΛΛ′ + Ψ. If the diagonal elements of Γ in
(R2) are different, then this allows us to identify the model.
Now suppose we wanted to estimate the model. Let (X1, . . . , XT )′ be a sample, where each Xt is an N × 1
vector. Assume that there are k latent factors. The estimation uses Gaussian likelihood:

L = −1
2NT log 2π − T

2 log |Σ| − T

2 tr(CΣ−1),

where Σ = ΛΛ′, C = T−1∑(Xt −X)(Xt −X)′, X = T−1∑Xt. The estimates are determined by two sets
of nonlinear equations:

(C − Ψ̂)Ψ̂−1Λ̂ = Λ̂Γ̂
Diag(Λ̂Λ̂′ + Ψ̂) = Diag(C)

and the restriction that Γ̂ = Λ̂′Ψ̂−1Λ̂ is diagonal. There is no analytical solution, so numerical methods are
needed.
Remark 4.5. Suppose if we change the units of measurement from Xt to DXt. Then the MLE becomes
Λ̂∗ = DΛ̂ and Ψ̂∗ = DΨ̂D. This means the estimated factor loadings and error variances are merely changed
by the units of measurement.
The classic factor model explains the interdependence of a set of variables in terms of latent factors. The
space spanned by the factor scores is identifiable, but the values are not. Common identification restrictions
involve assuming the factor scores are orthogonal, but other conditions are also possible. For asymptotic
analysis, it is typically assumed that N is small (fixed) and T →∞.
4.2.2 Principal Component Analysis (PCA)
This method was proposed by Hotelling (1933) to find linear combinations of variables with large variances.
The variables are not required to have a factor structure, and in fact they usually do not. Let Xt be an N × 1
vector of variables with 0 mean and known covariance matrix Σ. Let β be an N × 1 vector s.t. β′β = 1. Then
the variance of β′Xt = E[β′Xt]2 = β′E[XtX

′
t]β = β′Σβ.

To find the normalized linear combination of Xt with maximum variance, consider the Lagrangian L =
β′Σβ − λ(β′β − 1). Then the first order condition (FOC) is (Σ− λI)β = 0. Because β is nonzero, (Σ− λI)
must be singular, so λ must satisfy |Σ− λI| = 0.
Note that because Σ is symmetric PSD, this matrix has N positive solutions for λ. If λ1 ≥ λ2 ≥ · · · ≥ λN

are the eigenvalues with corresponding eigenvectors β1, . . . , βN . Then λ1 is the maximum variance, λ2 is the
second highest variance, . . . Note that this procedure creates two matrices Λ and B:

Λ = Diag(λ1, . . . , λN ),
B = (β1, . . . , βN ).

Theorem 4.6. Let the N -component random vector Xt with E[Xt] = 0 and E[XtX
′
t] = Σ. Then there exists

an orthogonal linear transformation
Ut = B′Xt

s.t. the covariance matrix of Ut is E[UtU
′
t ] = Λ, and the rth component of Ut, Ur,t = β′

rXt has maximum
variance of all normalized linear combinations uncorrelated with U1,t, . . . , U[r − 1, t].
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The principal components are identified from the eigenvectors of a covariance matrix. It is important to know
that analysis into principal components is most suitable when all the components of Xt are measured in a
common unit.
Theorem 4.7. Let X1, . . . XT be T observations from N (µ,Σ), where Σ is a matrix with N different
eigenvalues. Then, the MLE of λ1, . . . , λN and β1, . . . , βN consists of the ordered roots of |Σ̂ − λI| = 0
satisfying (Σ̂− λ̂iI)β̂i = 0, β̂′

iβ̂i = 1, where Σ̂ is the MLE of Σ.
This result gives the MLE of the principal components without reference to any factor structure. Now let us
consider the limiting distribution of the estimator.
Theorem 4.8. Let X1, . . . , XT be T observations from N (µ,Σ), where Σ is a matrix with N different
characteristics roots. Then, as T →∞ and N fixed,

√
T (λ̂i − λi)

d−→ N (0, 2λ2
i )

√
T (β̂i − βi)

d−→ N

0,
N∑

k=1,k ̸=i

λiλk

(λi − λk)2 βiβ
′
k

 .

Furthermore, the
√
T (λ̂i − λi) are mutually independent and independent of

√
T (β̂i − βi), and the asymptotic

covariances of the latter satisfy Acov(
√
T (β̂i − βi),

√
T (β̂k − βk)) = − λiλk

(λi−λk)2 βiβ
′
k.

This asymptotic result assumes that N ≪ T . All principal components are consistently estimated, and they
converge at rate T−1/2. The PCA transforms the data to a new coordinate system s.t. the greatest variance
by any normalized combination of the data comes to lie on the first coordinate:

Xt = BB′Xt = BUt = β1U1,t + · · ·+ βNUN,t.

Example 4.9. Consider the bond yields of different maturities. The first three principle components explains
a total of 99.96% of the total variance: 97.69, 2.14, 0.12.
Example 4.10. Consider the Fama-French three-factor model. Looking at the average returns, the first
three principle components explains 91.31% of the total variance: 83.84, 4.37, 3.10.
Remark 4.11. We can see if the principle component is correlated to the economic factor, e.g., the market
factor in the Fama-French three-factor model, by running a regression.

4.2.3 Factor Models of Large Dimensions and the PCA
We consider factor models of large dimensions, i.e., large N and T . We consider estimation, inference, and
factor selection. The model is

Xt = ΛFt + et,

where T and N are large, k is small, Var [et] is approximately diagonal, and Ft are independent of et.
Assume the number of factors is known. We treat Λ and Ft as parameters. The estimation procedure is as
follows:

1. Compute the k largest eigenvalues of XX ′ and multiply them by
√
T to get F̃ .

2. Compute Λ̃′ = F̃ ′X/T .

Notice that the columns of N1/2F̃ Ṽ 1/2 are estimates of the first k principal components of Xt, where

Ṽ = (TN)−1Diag{λ̃1, . . . , λ̃k}.

This shows that we are simply extracting the principal components of Xt.
Let F 0

t and λ0
i denote the true factor scores and loadings, respectively, with M a generic constant. Consider

the following assumptions:

• Assumption F(0) (factor score): E[∥F 0
t ∥]4 ≤ M and T−1∑F 0

t F
0
t

′ p−→ ΣF > 0 for an r × r
non-random matrix ΣF .

• Assumption L (factor loading): λ0
i is either deterministic s.t. ∥λ0

i ∥ ≤ M , or it is stochastic s.t.
E[∥λ0

i ∥]
4 ≤ 4, In either case, N−1Λ0′Λ0 p−→ ΣΛ > 0 for an r × r non-random positive definite matrix

ΣΛ, as N →∞.
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Remark 4.12. These are conventional assumptions in econometrics. Assumption L ensures that
each factor has a nontrivial contribution of the variance of Xt.

• Assumption E (error terms):
1. E[eit] = 0,E[|eit|8] ≤M .

2. E[eitejs] = σij,ts, with |σij,ts| ≤ σij ∀(t, s) and |σij,ts| ≤ τts ∀(i, j), s.t. N−1∑N
i,j=1 σij ≤ M ,

T−1∑N
t,s=1 τts ≤M , and (NT )−1∑

i,j,t,s=1 |σij,ts|≤M .

3. ∀(t, s), E[|N−1/2∑(eiseit − E[eiseit])|4] ≤M .

4. ∀t, N−1/2∑λieit
d−→ N (0,Γt) as N →∞, where

Γt = lim
N→∞

N−1
N∑

i,j=1
E[λiλ

′
jeitejt].

5. ∀i, T−1/2∑Fieit
d−→ N (0,Φi) as T →∞, where

Φt = lim
T →∞

T−1
N∑

s,t=1
E[F 0

t F
0
s

′
eitejt].

Remark 4.13. The second and third conditions require the residuals to be approximately
uncorrelated. The last two conditions rule out any correlation between the factor and error
components.

6. Assumption LFE (factors and errors): {λi}, {Ft}, {eit} are three mutually independent groups.
Dependence within each group is allowed.

7. Assumption IE (errors): ∀t ≤ T, i ≤ N ,
∑T

s=1 |τst| ≤M and
∑N

i=1 |σij | ≤M .
Remark 4.14. Assumption LFE is a restrictive assumption since it requires the factors to be
strictly exogenous. Assumption IE strengthens E.

Now we look at the results. Let CNT = min{T 1/2, N1/2}.
1. Factor Space: Convergence Rate. For any fixed k > 1, under Assumptions F(0), L, and E:

C2
NT

(
1
T

T∑
t=1
∥F̃t −H ′F 0

t ∥2

)
= Op(1),

where

H = (Λ0′Λ0/N)(F 0′
F̃ /T )Ṽ −1

Ṽ = 1
TN

Diag{λ̃1, . . . , λ̃k},

with the diagonal elements being the eigenvalues of XX ′ arranged in decreasing order.

2. Asymptotic Distribution: Factor Scores and Loadings. Let H be as above, Q = V 1/2ΨΣ−1/2
Λ ,

where V is a diagonal matrix containing the eigenvalues of Σ−1/2
Λ ΣF Σ−1/2

Λ in decreasing order and
Ψ are the corresponding orthonormal eigenvectors. Under Assumptions F(0), L, E, and LFE, as
N,T →∞:

If
√
N/T → 0, then ∀t, √

N(F̃t −H ′F 0
t ) d−→ N (0, V −1QΓtQ

′V −1).

If
√
T/N → 0, then ∀i, √

T (λ̃i −H−1λ0
i ) d−→ N (0, (Q′)−1ΨiQ

−1).
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Remark 4.15. The scores and loadings are both estimated up to an invertible matrix transformation.
Knowing H ′F 0

t is often as good as knowing F 0
t . The convergence rates of F̃t and λ̃i are

√
N and√

T , respectively.

3. Asymptotic Distribution: The Common Component. Let Ait = λ0
i

′Σ−1
Λ ΓtΣ−1

Λ λ0
i and Bit =

F 0
t

′Σ−
F 1ΦiΣ−1

F Σ−1
F F 0

t , where Φi is the variance of T−1/2∑T
t=1 F

0
t eit.

(a) Under Assumptions F(0), L, E, LFE, and IE

(N−1Ait + T−1Bit)−1/2(C̃it − C0
it)

d−→ N (0, 1).

(b) If N/T → 0, then
√
N(C̃it − Cit)

d−→ N (0, Ait).

(c) If T/N → 0, then
√
T (C̃it − Cit)

d−→ N (0, Bit).
4. The Factor Space: Maximum Deviation. Suppose Assumptions F(0), L, E, and LFE hold, then

max
1≤t≤T

∥F̃t −H ′F 0
t ∥ = Op(T−1/2) +Op((T/N)1/2).

Remark 4.16. This result proves an upper bound on the maximum deviation of the estimated
factors from the space spanned by the true ones.

5. (Determine the Number of Factors). Define the information criteria

PCP (k) = S(k) + kσ2g(N,T )
IC(k) = lnS(k) + kg(N,T ),

where S(k) is the estimated SSR allowing for k factors, σ22 is equal to S(kmax) for a pre-specified
value kmax. The second criterion uses the log scale, and as a result, σ2 drops out. The optimal k is
taken to the minimizer of the information criterion. We have k̂P CP and k̂IC .
Theorem 4.17. Suppose Assumptions F(0), L, E, and LFE hold. If (i) g(N,T ) → 0 and (ii)
C2

NT g(N,T )→∞ as N,T →∞, then Pr[k̂P CP = r]→ 1 and Pr[k̂IC = r] = 1.

5 Volatility in Time and Space
We have established that aggregate stock returns are weakly predictable and portfolio returns are cross
sectionally correlated, exhibiting an approximate factor structure. Now, we will examine asset return volatility.
We focus on basic models and concepts, preparing for further analysis.
The motivation is the volatility is strongly persistent (useful for forecasting) and cross sectionally correlated
(important for portfolio management). This is true for companies in different sectors and different countries.
The readings for this chapter are

• Clark, P. (1973). “A Subordinated Stochastic Process Model With Finite Variance for Speculative
Prices,” Econometrica 41, 135-155.

• Engle, R.F. (1982). “Autoregressive conditional heteroskedasticity with estimates of the variance of
U.K. inflation,” Econometrica 50:987-1008.

• Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh. (2016). “The common factor in
idiosyncratic volatility: Quantitative asset pricing implications,” Journal of Financial Economics,
2016, 119, 249-283.

• Engle, R.F. and S. Campos-Martins. (2020). "Measuring and Hedging geopolitical Risk," Working
paper.

5.1 Volatility Concepts
Let {rt}T

t=1 be a sample of returns, e.g., on the S&P500 index, over evenly spaced time intervals. The realized
variance is the sum of squared returns. For a period of n time intervals with returns rt−n, . . . , rt−1, the
realized variance is RV =

∑n
i=1(rt−i − r)2.

Remark 5.1. Daily realized variance is a summation over squared intraday returns, e.g., over 5-minute
intervals. Realized variance is a finite sample concept, not a population concept.
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Realized volatility is the square root of the realized variance: S =
√
RV .

Remark 5.2. In practice, S is often multiplied by a constant to bring the measure to an annualized scale.
For instance, if the RV is daily realized variance, then an annualized realized volatility is given by

√
252 ·RV .

Conditional variance is the variance of a future return that is conditional on an information set, such as the
history of returns. Conditional volatility is the square root of the conditional variance.
A stochastic volatility (SV) model specifies the volatility as a latent process. A typical stochastic volatility
model is

rt = µ+ exp(ht/2)εt,

ht = ω + ρht−1 + ηt,

εt ∼ N (0, 1) i.i.d.,
ηt ∼ N (0, 1) i.i.d.,

where ηt is independent of zs ∀t, s.
Implied volatility is the volatility level implied by options prices.
Remark 5.3. The implied volatility is different from realized volatility if the volatility risk is priced. Empirical
estimates show that implied volatility tends to be higher than realized volatility. In other words, there is a
positive volatility risk premium.

5.2 Volatility in Time
5.2.1 ARCH(1) Model
This is the simplest model for conditional variance:

rt = µ+ h
1/2
t εt

εt ∼ N (0, 1) i.i.d.,

where ht = ω + α(rt−1 − µ)2.

The volatility parameters are ω > 0 and α ≥ 0. Note that the volatility level h1/2
t is known at time t− 1. If

we define et = rt − µ, the error of forecasting e2
t is

vt = e2
t − E[e2

t | rt−1, rt−2, . . . ] = e2
t − ht.

Combining this with the definition of ht, we have e2
t = αe2

t−1 + vt, where vt is uncorrelated with e2
t−1 because

it is a forecasting error. Therefore, the demeaned square return follows an AR(1) process.

α governs the moments and persistence of e2
t . For e2

t to be stationary, we need |α| < 1. For Var
[
e2

t

]
<∞,

we need 3α2 < 1. Also, ρτ = Cor[e2
t , et−τ ] = ατ . This structure, i.e., a single parameter governing both

moments and persistence, is too rigid to describe the return process successfully.
A natural extension is to consider an ARMA(1, 1) model instead of an AR(1) model, for squared returns.
This leads to the GARCH(1, 1) model.

5.2.2 GARCH(1, 1) Model
The model is

rt = µ+ h
1/2
t εt,

εt ∼ N (0, 1) i.i.d.,

where ht = ω + α(rt−1 − µ)2 + βht−1. The parameters satisfy ω ≥ 0, α ≥ 0, β ≥ 0. The model is stationary if
α+ β < 1 . By recursive substitution, the conditional variance is an exponentially weighted average of past
square returns (rt−τ − µ)2. Note that the sign of rt − µ does not affect the volatility level, i.e., GARCH(1, 1)
is a symmetric model.
The moments of returns satisfy:

• E[rt] = µ.
• Var [rt] = E[(rt − µ)2] = E[ht]E[ε2

t ] = E[ht] = ω/(1− α− β) := σ2.
• E[(rt − µ)3] = 0.
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• E[(rt − µ)4] = E[h2
t ]E[ε4

t ] = 3E[h2
t ]. The expression for E[h2

t ] can be found by squaring the equation
ω + (αε2

t−1 + β)ht−1 and taking the expectation, which shows 3E[h2
t ]/σ4 > 3. Therefore, E[(rt − σ)4]

is finite iff 2α2 + (α + β)2 < 1. This property follows because the unconditional distribution is a
mixture of normal distributions with random weights.

Define

et = rt − µ
st = e2

t = htε
2
t

vt = e2
t − ht.

Then,
st = ω + (α+ β)st−1 + vt − βvt−1.

The demeaned squared return follows an ARMA(1, 1) process. The correlation satisfies Cor[st, st+τ ] with
C(α+ β) = α(1−αβ−β2)

(α+β)(1−2αβ−β2) . The decay rate is (α+ β)τ . In practice, β ≈ 1, α ≈ 0.

In general, the conditional variance ∀n ≥ 1 is

Var [rt+n | rt, rt−1, . . . ] = σ2 + (α+ β)n−1(ht+1 − σ2).

Because rt is serially uncorrelated, we also have

Var [rt+1 + . . . rt+n | rt, rt−1, . . . ] = nσ2 + 1− (α+ β)n

1− α− β (ht+1 − σ2).

Define θ = (µ, ω, α, β). Let f(h1, r1, . . . , rT ; θ0) be the joint density of h1, r1, . . . , rT , which satisfies

f(h1, r1, . . . , rT ; θ0) = f(h1, r1; θ0)
T∏

t=2
f(rt | rt−1, . . . , r1, h1; θ).

Then the log-likelihood function, conditional on the initial observation r1 and the initial volatility level h1/2
1 ,

is

L(θ) =
T∑

t=2
log f(rt | rt−1, . . . , r1, h1; θ).

We can show that

L(θ) = K − 1
2

T∑
t=2

log ht −
T∑

t=2

(rt − µ)2

2ht
,

where ht = ω + α(rt−1 − µ)2 + βht−1 for t = 2, . . . , T . The likelihood function can be maximized numerically
w.r.t. θ.

5.3 Volatility in Space
The starting point is a standard model for returns:

ri,t = αi + λ′
ift +

√
hi,tei,t,

where ft and λi are factors and loadings, hi,t is the conditional variance of ri,t, e.g., hi,t = ω + α(rt,i − µ)2 +
βhi,t−1, ei,t is uncorrelated over i and t with Et−1[ei,t] = 0 and Et−1[ei,tej,t] = 0. Then consider the case
that ei,t is uncorrelated but not necessarily independent. In particular, define ψi,t as a volatility shock:

ψi,t = e2
i,t − 1 == (ri,t − αi − λ′

ift)2 − hi,t

hi,t
.

It is possible that Et−1[ψi,tψj,t] > 0. Engle and Campos-Martins proposed a model to capture time-varying
positive comovement between these volatility shocks:

ei,t =
√
g(si, xt)εi,t,

g(si, xt) = si(xt − 1) + 1,
εi,t ∼ N (0, 1) i.i.d. in i, t,
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where xt is a latent volatility factor with Et−1[xt] = 1 and Et−1[(xt − 1)2] = vt, si ∈ [0, 1] is a factor loading,
εi,t and xt are two mutually independent sequences, and the functional form of g(si, xt) ensures Et−1[e2

i,t] = 1,
which is compatible with a GARCH specification. This model implies

Et−1[e2
i,te

2
j,t] = Et−1[g(si, xt)g(sj , xt)] = sisjvt,

Et−1[e4
i,t] = 3s2

i + 2.

We can write e2
i,t − 1 = si(xt − 1) + ηi,t with ηi,t = g(si, xt)(ε2

i,t − 1). This is a linear factor model for e2
i,t − 1,

with factor score equal to (xt − 1) and loading equal to si. Therefore, the PCA provides consistent estimates
if data on e2

i,t are available.

6 The Stochastic Discount Factor
The readings for this chapter are

• Hansen, L.P. and R. Jagannathan. 1997. Assessing Specification Errors in Stochastic Discount Factor
Models. Journal of Finance 52, 587-613.

• Hansen, L.P. and S.F. Richard. 1987. The Role of Conditioning Information in Deducing Testable
Restrictions Implied by Dynamic Asset Pricing Models. Econometrica 55, 587-613.

The CAPM and static multi-factor models are designed to explain average asset returns, not their dynamic
properties. Also, these theories take the expected return on the market portfolio (or factor portfolios) as
given. Consequently, they are completely silent about the determination of the aggregate equity premium.
Stochastic discount factor (SDF) models address these issues.
Consider a portfolio that costs one unit and pays Rt+1 units in the next period. Then

1 + Et[mt+1Rt+1],

where mt+1 is called the stochastic discount factor (SDF). The SDF exists if there are no arbitrage opportu-
nities, a valid SDF must be non-negative, and the SDF is unique iff the market is complete.

6.1 Example Models
We will first look at a simple model then a more general model.
Example 6.1 (Time-separable utility). Suppose a representative investor solves

maxEt

 ∞∑
j=1

δjU(ct+j)

 .
Then, the SDF is

mt+1 = δ
U ′(Ct+1)
U ′(Ct)

.

For example, if U(ct) = (c1−γ
t − 1)/(1 − γ), then mt+1 = δ(ct+1/ct)−γ . A log-linearization leads to

mt+1 = θ1 − θ2 ln(ct+1/ct). This is the CCAPM model, where the SDF is affine in consumption growth.
Example 6.2 (State Non-Separable Preferences). The Epstein-Zin-Weil objective function is defined recur-
sively by

Ut = {(1− δ)cρ
t + δ(Et[Uα

t+1])ρ/α}1/ρ,

where 1/(1− ρ) equals the elasticity of intertemporal substitution and (1−α) measures risk aversion. Assume
the budget constraint for a representative agent is Wt+1 = Rm,t+1(Wt − ct) with Rm,t+1 the return on the
market portfolio and Wt the wealth level. We can show that this leads to the SDF

mt+1 =
{
δ

(
ct+1

ct

)−(1−ρ)
}α/ρ(

1
Rm,t+1

)1−α/ρ

,

and a log-linearization leads to the Consumption and Market-based CAPM:

mt+1 = θ1 + θ2 ln(ct+1/ct) + θ lnRm,t+1.

The SDF is affine in consumption growth and market return.
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Example 6.3 (Time non-separable preferences). Suppose a representative investor solves

maxEt

 ∞∑
j=1

δj (ct+j −Xt+j)1−γ − 1
1− γ

 ,
where Xt is the external consumption habit. Let St = (ct −Xt)/ct be the surplus consumption ratio. Then,
the SDF is

mt+1 = δ

(
St+1ct+1

Stct

)−γ

and under certain assumptions, the log-linearized SDF is

mt+1 = θ1 + θ2 lnSt + θf(lnSt) + (θ4 + θ5f(lnSt)) ln(ct+1/ct).

This SDF is affine in consumption growth, where the time–varying coefficient f(lnSt) captures state-dependent
risk aversion.
Example 6.4 (Conditional CCAPM). This is a generalization of the CCAPM to capture time-varying risk
premium. The SDF is

mt+1 = (θ1 + θ2zt) + (θ3 + θ4zt) ln(ct+1/ct),
where zt is a state variable for the risk premium, e.g., corporate bond spread, consumption to wealth ratio,
or labor income to consumption ratio.
Example 6.5 (Factor models). These models are motivated by cross sectional multifactor pricing models
and admit the following common expression:

mt+1 = θ1 + θ2Rm,t+1 + θ′
3Ft+1,

where Rm,t+1 is the return to the market portfolio and Ft+1 is a vector of factor portfolios. Later, we will
show there is an equivalence between a linear factor model of the SDF and a linear factor model written
in a return-beta form with the same factors. Therefore, in this case, an SDF can be tested by testing the
corresponding multifactor pricing model.
Example 6.6 (Non-parametric approach). This approach begins with a flexible nonparametric approximation.
For example, Rosenberg and Engle (2002) apply a generalized Chebyshev polynomial approximation for the
SDF:

mt+1(Rt+1) = θ0T0(Rt+1) exp

 N∑
j=1

θjTj(Rt+1)

 .

6.2 The Hansen-Jagannathan (HJ) Bound
This bound provides an admissible region for the unconditional mean and standard deviation of the SDF
using security market data. It is based on the following two assumptions: (1) the law of one price (portfolios
with the same payoff must have the same price), and (2) no arbitrage (nonnegative payoffs that are positive
with positive probability must have positive prices).
Let x ∈ RN be a vector of random payoffs, and q be a price vector (omitting the t-index. Then q = Et[mx].

• Assumption 1: E[|m|2] <∞,E[|x|2] <∞,E[xx⊤] is nonsingular, and E[|q|] <∞.
• Restriction 1: E[q] = E[mx], the law of one price.
• Restriction 2: m > 0, sufficient to role out arbitrage.

6.2.1 The HJ Bound with a Riskfree Asset
Assume x contains a riskless asset. We use m to denote the true SDF, unobservable to the econometrician.
Define α0 as the solution to E[xx⊤α0] = E[q], i.e., α0 = E[xx⊤]−1E[q]. Let m∗ = x⊤α0. Then m∗ =
x⊤E[xx⊤]−1E[xm]. Therefore, m∗ is the (population) least-squares projection of m on x.
Some properties of m∗:

1. m∗ is a valid SDF for pricing x in the sense that E[xm∗] = E[q].
2. Because the payoff includes a riskfree payoff, by Restriction 1, E[m∗] = E[m] = 1/Rf , where 1/Rf is

the discount rate.
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3. Because m∗ is the least-squares projection of m onto x, we have E[x(m−m∗)] = 0, i.e., the projection
residual is orthogonal to the explanatory variable. Consequently

Var[m] = Var[m∗] + Var[m∗ −m] ≥ Var[m∗]. (3)
Therefore, Var[m∗] is a lower bound for all admissible stochastic discount factors that satisfy
Restriction 1.

Using Equation (3), we obtain
σ(m)
E[m] ≥

σ(m∗)
E[m∗] , (4)

where the right hand side is the HJ bound. We state this result as a lemma.
Lemma 6.7. Suppose x includes a riskfree payoff. Then, all admissible SDFs satisfying Assumption 1 and
Restriction 1 are inside the bound specified by Equation (4).
The structural economic model determines the left hand side. The right hand side can be computed using
data on x and q. We reject the SDF if it violates the bound.
We will relate the HJ bound to the mean-variance frontier. Recall the mean-variance frontier comprises of
linear combinations of a finite number of assets with price 1. Suppose these assets from a set N . We have
the following corollary:
Corollary 6.8. Suppose x includes a riskfree payoff. Then, the HJ bound on σ(m)/E[m] under Assumption
1 and Restriction 1 is given by the Sharpe ratio of the mean-standard deviation frontier for N :

σ(m)
E[m] ≥ Sharpe ratio of the efficient frontier for N .

This result demonstrates that a steep slope of the mean-standard deviation frontier for asset payoffs implies a
potentially dramatic bound on the volatility of the SDF.
6.2.2 The HJ Bound Without a Riskfree Asset
Let xa denote the (N + 1)-dimensional random vector formed by augmenting x with a unit payoff. Since
E[xx⊤] is nonsingular and no linear combination of x is equal to one with probability one, E[xaxa⊤] is also
nonsingular. Because the market is incomplete, the price of the riskless asset is not uniquely determined.
Let v be a candidate for the discount rate and πv be the corresponding extension of π from N to N a. Then
∃m∗

a with E[m∗
vx] = E[q] and E[m∗

v] = v. The volatility bound for this v is then σ(m) ≥ σ(m∗
v). For each v,

we compute the Sharpe ratio. After repeating the computation for all allowed v, we obtain an admissible
region for σ(m)/E[m].
Theorem 6.9. Suppose x contains risky assets only. Then, all admissible SDFs satisfying Assumption I,
E[m∗

vx] = E[q], and E[m∗
v] = v are inside the bound specified by

σ(mv)
E[mv] ≥

[(E[q]− vE[x])⊤Σ−1(E[q]− vE[x])]1/2

v
.

Remark 6.10. The bound is nonparametric, depending only on means and covariances. Different testing
assets produce different bounds.

6.3 The HJ Distance
The goal is to assess specification errors in SDF models, since most models are likely misspecified. The
problem is that the true SDF is not observed and may be non-unique. How can we compare (or rank) different
asset pricing models, i.e., different SDF proxies?
Hansen and Jagannathan (1997) provide a distance measure for this purpose.
Suppose the vector of security market payoffs used in an econometric analysis is denoted by x. which is used
to generate a collection of payoffs using portfolio weights in Rn:

P = {p | p = a⊤x for some a ∈ Rn}.
Let q denote the vector of securities prices and F the information set used for pricing. Then, q = E[mx | F ],
which implies

E[q]− E[mx] = 0. (5)
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Let M denote the set of all random variables with finite second moments satisfying Equation (5). Clearly,
M depends on x. Let y denote some “proxy” variable for a SDF that, strictly speaking, does not satisfy
Equation (5). Then define the following least-squares measure of misspecification:

δ2 = min
m∈M

E[(y −m)2].

The bound δ2 is unconditional and, as a result, is time-invariant.
• Assumption 1: E[|m|2] <∞, E[|x|2] <∞, E[xx⊤] is nonsingular, and E[|q|] <∞.

• Assumption 2: ∀α ∈ Rn, α⊤E[q] > 0 if α⊤x ≥ 0, and Pr[α⊤x] > 0. Further, for α ∈ Rn, α⊤E[q] ≥ 0
if α⊤x = 0.

• Assumption 3: If α⊤x = α∗⊤x and α∗E[q] = α∗⊤E[q] for some α, α∗ ∈ Rn, then α = α∗.
Remark 6.11. Assumption 2 is a statement of the principle of arbitrage applied to expected prices. It
guarantees a nonnegative SDF s.t. Equation (5) holds.
Theorem 6.12. Under Assumptions 1-3, the squared HJ distance between the SDF proxy y and the set of
true SDFs satisfying Equation (5) is given by

δ2 = E[xy − q]⊤E[xx⊤]−1E[xy − q].

Remark 6.13. The specification error δ equals the maximum pricing error among all portfolios with the
second moment equal to 1. For example, if δ = 0.3, then the expected pricing error is 30 cents on a portfolio
with return standard deviation equal to 1 dollar. Note that this value is quite large.
Now consider estimating the specification error. Suppose there are T observations: {xt, qt, yt}T

t=1.
• Assumption 4: The process {xt, qt.yt} is stationary and ergodic.

The estimator is

δ̂2 = 1
T

[
T −1∑
t=1

xt+1yt+1 − qt

]⊤(T −1∑
t=1

xt+1x
⊤
t+1

)−1 [T −1∑
t=1

xt+1yt+1 − qt

]
.

Theorem 6.14. Under Assumptions 1-4, δ̂2 converges a.s. to δ2.
Theorem 6.15. Let η = E[xt+1yt+1−qt], h1t+1 = (xt+1yt+1−qt)−η,Ω = E[xt+1x

⊤
t+1], h2t+1 = xt+1x

⊤
t+1−Ω.

Assume η ̸= 0. Under Assumptions 1-4,
√
T (δ̂2 − δ2) = 1√

T

T −1∑
t=1

ht+1 + op(1) d−→ N (0, V ),

where
ht = 2η⊤Ω−1h1t − η⊤Ω−1h2tΩ−1η,

V =
∞∑

j=−∞
E[htht−j ].

Example 6.16. We can evaluate a variety of SDF models: CAPM, CRRA, EZ, FF3, FF5, DEF, and CAY.
Empirical evidence shows that all models are strongly rejected by the J test, a test for model misspecification.
All confidence intervals overlap, so the differences are not significantly different. As a result, we cannot rank
different models.

6.4 Estimation and Inference
We apply the generalized method of moments (GMM) to estimate and test models of the SDF. Assume mt is
a valid SDF. Then, for any return vector Rt, we have 1 = E[mt+1Rt+1 | Ft], where Ft is the information set
at t. Explicitly,

1 =
∫
mt+1Rt+1f(mt+1, Rt+1 | Ft)dRt+1dmt+1.

If an economic specifies the joint conditional distribution of mt+1 and Rt+1, we can compute the integral
explicitly and estimate the SDF by minimizing the pricing errors. However, an economic model usually only
provides some conditional moment restrictions, not the joint distribution.
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Example 6.17. Let mt(θ) be a model of the SDF with θ being a finite-dimensional parameter vector. Let
Rt = (R1,t, . . . , Rq,t) be a vector of returns. Then 1 = E[mt+1(theta)Rt+1 | F ]. Thus ∀zt ∈ Ft, we have
E[mt+1(θ)Ri,t+1zt] = 0 ∀i ∈ [q]. Moreover, for any well-behaved function h, E[(mt+1(θ)Ri,t+1 − 1)g(zt)] =
0 ∀i ∈ [q].
Example 6.18 (Nagel and Singleton (2011)). Their goal is to estimate and test several conditionally affine
SDFs that take the form mt+1(θ) = (β1 + γ1st) + (β2 + γ2st)∆ct+1, where ∆ct+1 = log(ct+1/ct) is the
consumption growth, and st is either the consumption-wealth ratio, the corporate bond spread, or the labor
income-consumption ratio. Rt+1 is the real returns on 4 Fama-French portfolios and the 3-month t-bill rate,
and zt = (1, Rt, st,∆ct).

6.4.1 The GMM Estimator
The GMM estimator is based on unconditional moment restrictions. Suppose these moment conditions are
E[u(xt, θ0)] = 0, where u : RN → R, xt is a random vector, and θ0 ∈ RK is a parameter vector. xt can
include lagged values of variables, so u(xt, b0) can be serially correlated. In Example 6.17, u(xt+1, θ0) =
(mt+1(θ)Rt+1 − 1)⊗ zt ∈ Rpq, where Rt+1 ∈ Rq, zt ∈ Rp. Define

gT (b) = 1
T

T∑
t=1

u(xt, θ).

The GMM estimator is computed by setting gT (θ) as close to zero as possible with respect to a weighting
matrix WT :

θ̂(WT ) = arg min
θ
gT (θ)⊤WT gT (θ).

A central object in the GMM theory is the covariance matrix of T 1/2gT (θ):

S0 = lim
n→∞

Var[T 1/2gT (θ)] =
∞∑

s=−∞
E[u(xt, θ0)θ(vt−s, θ0)⊤].

This is the long run covaraince matrix of u(xt, θ0). In Example 6.17, u(xt, θ0) is serially uncorrelated, so
S0 = E[u(xt, θ0)u(xt, θ0)⊤]. If the model is correctly specified, then under some regularity conditions,

√
T (θ̂(WT )− θ0) d−→ N (0, V (W0)),

where V (W0) = [G⊤
0 W0G0]−1(G⊤

0 W0S0W0G0)[G⊤
0 W0G0]−1, W0 = limWT (non-random and positive defi-

nite), and G0 = ∂E[u(xt, θ0)]/∂θ′.

6.4.2 The J Test
By the delta method, √

TgT (θ̂(WT )) d−→ N (0, Q(W0)),

where Q(W0) = (I−G0[G⊤
0 W0G0]−1G⊤

0 W0)S0(I−G0[G⊤
0 W0G0]−1G⊤

0 W0)⊤. Let Q̂ be a consistent estimator
of Q(W0), Q̂+ be its pseudoinverse. Then under the null hypothesis,

J = TgT (θ̂)⊤Q̂+gT (θ̂) d−→ χ2
N−K .

This is the J-statistic for correct model specification.

Remark 6.19. The covariance matrix V (W0) is minimized when W0 = S−1
0 . The estimator with WT = Ŝ−1

is called the optimal GMM estimator. However, it is important to be aware that
1. The resulting estimator is optimal within a small family, i.e., among estimators using the same

moment estimators.
2. In practice, the weighting matrix is very hard to estimate, often leading to disappointing finite sample

properties.
3. When the model is misspecified, different weighting schemes imply different pseudo-true values.

Asset returns are often strongly cross-sectionally correlated, so Ŝ is often singular. We can use WT = I or
WT = (Diag Ŝ)−1.
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6.5 Applications
6.5.1 CAPM
Consider the usual system for the CAPM, where Rt = α+ βRmt + et. If the CAPM holds, then E[Rt] = γβ,
where γ = E[Rmt]. The parameters γ, β, α can be estimated using the GMM:

E

[
Rt − α− βRmt

(Rt − α− βRmt)Rmt

Rt − γβ

]
= 0.

Let

gT (γ, β, α) = 1
T

T∑
t=1

(
Rt − α− βRmt

(Rt − α− βRmt)Rmt

Rt − γβ

)
.

The GMM estimator with an identity weighting matrix is given by

(γ̂, β̂, α̂) = arg min
γ,β,α

gT (γ, β, α)⊤gT (γ, β, α).

We have the following:

β̂ =
∑

(Rmt −Rm)(Rt −R)∑
(Rmt −Rm)2

,

α̂ = R− β̂Rm,

γ̂ = (β̂⊤β̂)−1β̂⊤R,

where R = T−1∑Rt. The null hypothesis of the CAPM is E[Rt]− γβ = 0, which can be tested using the
J-test: TgT (γ̂, β̂, α̂)⊤Q̂∗gT (γ̂, β̂, α̂), where Q̂ is a consistent estimate of the variance of

√
TgT (γ̂, β̂, α̂). Under

the null hypothesis, this test converges to χ2
N−1.

6.5.2 Example 6.18
We compare different estimators:

• Unconditional: based on E[mt+1(θ)Rt+1 − 1] = 0, where the elements of p are 1 for gross returns
and 0 for excess returns.

• Fix IV: based on E[(mt+1(θ)Rt+1)⊗ zt], where zt = (1, Rt, st,∆ct).
• Optimal IV Sieve: based on E[z∗

t (mt+1(θ)Rt+1 − 1)] = 0, where z∗
t contains the optimal instruments,

and the conditional expectations are estimated using the sieve method.
Empirically, we find

• The ∆ct+1 coefficients differ drastically between the conditional and unconditional cases.
• The weighting matrix matters.
• The J test overwhelmingly rejects the model in the conditional case, but not in the unconditional

case.
• The results from fixed IV (using optimal weighting matrix) is similar to that of the optimal IV sieve.

7 Continuous-Time Models
7.1 Discrete-Time Martingales
Define Ft = σ(X1, . . . , Xt).A sequence of random variables {Yt} is a martingale w.r.t. the sequence of random
variables {Xt} if:

1. ∀t ≥ 1,∃ft : Rt → R s.t. Yt = ft(X1, . . . , Xt).
2. {Yt} satisfies the fundamental martingale identity E[Yt | Ft−1] = Yt−1 ∀t ≥ 1.

If a sequence of random variable {At} is s.t. ∀t, we have At ∈ Ft−1, then we say {At} is non-anticipating
w.r.t. {Ft}. The process {Ỹt} defined by setting Ỹ0 = Y0 and Ỹt = Y0 +A1(Y1 − Y0) +A2(Y2 − Y1) + · · ·+
At(Yt − Yt−1) ∀t ≥ 1 is called the martingale transform of {Yt} by {At}.

28



Theorem 7.1 (Martingale transform theorem). If {Yt} is a martingale w.r.t. {Ft}, and if {At} is a sequence
of bounded random variables that are non-anticipating w.r.t. {Ft}, then the sequence of martingale transforms
{Ỹt} is itself a martingale w.r.t. {Ft}.

A random variable τ that takes values in N ∪ {0,∞} is called a stopping time for the sequence {Ft} if
{τ ≤ t} ∈ Ft ∀t.

Remark 7.2. In practice, to avoid stopping at ∞, we often use t ∧ τ := min{t, τ}, which is a bounded
stopping time.

Theorem 7.3 (Stopping time theorem). If {Yt} is a martingale w.r.t. the sequence {Ft}, then the stopped
process {Yt∧τ} is also a martingale w.r.t. {Ft}.

If the integrable random variables Yt ∈ Ft satisfy E[Yt | Ft−1] ≥ Yt−1 ∀t ≥ 1, then we say {Yt} is a sub-
martingale adapted to {Ft}. The martingale transform and stopping time theorems apply to submartingales.

7.2 Continuous-Time Martingales and the Ito Integral
A continuous time stochastic process {Bt} is called a standard Brownian motion on [0, T ) if it has the
following four properties:

1. B0 = 0.

2. The increments of Bt are independent, that is, for any finite set of times 0 < t1 < t2 < · · · < tn < T ,
the random variables Bt2 −Bt1 , . . . , Btn −Btn−1 are independent.

3. For any 0 ≤ s < t < T , the increments Bt −Bs ∼ N (0, t− s).

4. For all ω in a set of probability one, Bt(ω) is a continuous function w.r.t. t.

If a collection of σ-algebras {Ft} satisfy Fs ⊂ Ft ∀s ≤ t, then we call it a filtration. If the random variables
{Xt} are s.t. Xt is Ft-measurable, then we say {Xt} is adapted to {Ft}.

Suppose {Xt} is adapted to {Ft}. We say {Xt} is a martingale if:

1. E[|Xt|] <∞ ∀t and

2. E[Xt | Fs] = Xs ∀s, t s.t. 0 ≤ s ≤ t <∞.

The Ito integral is denoted by ∫ T

0
f(ω, t) dBt,

where Bt is the standard Brownian motion, and ω indicates that f can depend on the history of Bt.

Theorem 7.4. For any continuous function f : R→ R that satisfies E[(f(Bt+h − f(Bt))2] ≤ Ch for some
C <∞, h > 0, if we take the partition of [0, T ] given by ti = i∆t with ∆t = T/2−n for 0 ≤ i ≤ n, then

lim
n→∞

n∑
i=1

f(Bti01)(Bti
−Bti−1) =

∫ T

0
f(Bs) dBs,

where the limit is understood in the sense of convergence in probability.

More generally, for any adapted, measurable function f : Ω× [0, T ]→ R with

Pr
[∫ T

0
f2(ω, t) dt <∞

]
= 1,

the integral ∫ T

0
f(ω, t) dBt

exists and is unique.
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7.3 Ito’s Formula
Theorem 7.5. If the function f : R→ R has a continuous second derivative, then

f(Bt) = f(B0) +
∫ t

0
f ′(Bs) dBs + 1

2

∫ t

0
f ′′(Bs) ds.

In practice, we often express this result as

df(Bt) = f ′(Bt) dBt + 1
2f

′′(Bt) dt,

where the initial value is f(B0).
Theorem 7.6. If f(t, Bt) has a continuous first derivative in the first argument and a continuous second
derivative in the second argument, then

f(t, Bt) = f(0, 0) +
∫ t

0

∂

∂x
f(s,Bs) dBs +

∫ t

0

∂

∂s
f(s,Bs) ds+ 1

2

∫ t

0

∂2

∂x2 f(x,Bs) ds.

In practice, we often express this result as

df(t, Bt) = fx dBs +
[
ft + 1

2fxx

]
dt,

where the initial value is f(0, B0).
We say that a proces {Xt}0≤t≤T is standard if {Xt} has the representation

Xt = X0 +
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dBs ∀0 ≤ t ≤ T,

where a, b are adapted, measurable processes with

Pr
[∫ T

0
|a(ω, s)| ds <∞

]
= 1,Pr

[∫ T

0
|b(ω, s)| ds <∞

]
= 1.

Theorem 7.7. If f(t, Bt) has a continuous first derivative in its first argument and a continuous second
derivative in its second argument, and {Xt}0≤t≤T is a standard process with the integral representation

Xt =
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dBs ∀0 ≤ t ≤ T,

then
f(t,Xt) = f(0, 0) +

∫ t

0
fxdXs +

∫ t

0
fs ds+ 1

2

∫ t

0
fxxb

2(ω, s) ds.

In practice, we often write these two equations as

dXt = a(ω, t) dt+ b(ω, t) dBt,

df(t,Xt) = fx dXt + ft ft+ 1
2fxxb

2(ω, t) dt.

Theorem 7.8. If f(Xt, Yt) has continuous second derivatives in both arguments, and Xt and Yt are standard
processes with integral representations

Xt =
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dBs

Yt =
∫ t

0
α(ω, s) ds+

∫ t

0
β(ω, s) dBs,

then
df(Xt, Yt) = fx dXt + fy dYt + 1

2fxxb
2(ω, s) dt+ 1

2fyyβ
2(ω, s) dt+ fxyb(ω, s)β(ω, s) dt.
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Theorem 7.9. If f(Xt, Yt) has continuous second derivatives in both arguments, and Xt and Yt are standard
processes with integral representations

Xt =
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dB1

s

Yt =
∫ t

0
α(ω, s) ds+

∫ t

0
β(ω, s) dB2

s ,

where B1
s , B

2
s are two independent Brownian motions, then

df(Xt, Yt) = fx dXt + fy dYt +
[

1
2fxxb

2(ω, s) + 1
2fyyβ

2(ω, s)
]
dt.

Theorem 7.10. If f(Xt, Yt) has continuous second derivatives in both arguments, and Xt and Yt are standard
processes with integral representations

Xt =
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dB1

s

Yt =
∫ t

0
α(ω, s) ds+

∫ t

0
β(ω, s) dB2

s ,

where B1
s , B

2
s are two standard Brownian motions with

E[dB1
sdB

2
s ] = ρ dt,

then
df(Xt, Yt) = fx dXt + fy dYt +

[
1
2fxxb

2(ω, s) + 1
2fyyβ

2(ω, s) + ρfxyb(ω, s)β(ω, s)
]
dt.

7.4 Quadratic Variation
A finite ordered set of grid points πn = {t0 ≤ t1 ≤ · · · ≤ tn} with t0 = 0 and tn = t is called a partition of
[0, t]. The mesh µ(π) of a partition π is the maximum grid size of this partition. For any partition πn of
[0, t] ⊂ [0, T ] and for any process {Xt} on [o0, T ], the πn-quadratic variation of the process {Xt} is defined to
be

Qπn(Xt) =
∑

(Xti −Xti−1)2.

If Qπn converges in probability to a process {Vt} for any sequence of partitions {πn} of [0, t] s.t. µ(πn} → 0
as n→∞, then we say that {Vt} is the quadratic variation of {Xt}, often denoted as ⟨X⟩t.
Theorem 7.11. If Xt is a standard process with the process with the representation

Xt =
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dBs, (6)

then the quadratic variation of Xt exists and is given by

⟨X⟩t =
∫ t

0
b(ω, s)2 ds

for t ∈ [0, T ].
Remark 7.12. In Equation (6), the first term represents the drift and the second term represents the
volatility. We will see this in later stochastic differential equations.

7.5 Continuous-Time Models
We will focus on the Black-Scholes (1973) and Merton (1973) models. We have the following assumptions:

1. There is no market imperfection. That is, there are no taxes, transactions costs, or short sales
constraints, and the trading is continuous and frictionless.

2. There is unlimited opportunity for riskless borrowing and lending at the continuously compounded
rate of return r. A $1 investment in such an asset over the time interval τ grows to exp(rτ).
Alternatively, if D(t) is the date t price of discount bound maturing at date T with face value 1, then
for t ∈ [0, T ], the bond price dynamics are given by dD(t) = rD(t) dt.
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3. The stock price follows a geometric Brownian motion, which is the solution to the following Ito SDE
on t ∈ [0, T ]:

dP (t) = µP (t) dt+ σP (t) dB(t), (7)
where P (0) = P0 > 0, B(t) is a standard Brownian motion, and at least one investor observes σ
without error.

4. There are no arbitrage opportunities.
Remark 7.13. The solution to Equation (7) is given by

P (t) = P0 exp
((

µ− 1
2σ

2
)
t+ σB(t)

)
.

Let G denote the price of a call option. We assume that it depends only on the interest rate and the stock
price, that is G = G(P, t). Then by Ito’s formula, dG = µgGdt+ σg dB(t), where

µg = 1
G

(
µP

∂G

∂P
+ ∂G

∂t
+ σ2P 2

2
∂2G

∂P 2

)
,

σg = 1
G

(
σP

∂G

∂P

)
.

We have two risky assets, a stock and an option, driven by a single Brownian motion. Thus, a certain linear
combination of the two assets can eliminate the influence of the Brownian motion, producing a riskfree
asset. Let Ig(t) and Ip(t) denote the dollar amount invested in the option and the stock, respectively. The
instantaneously dollar return of the portfolio is

dI = Ip

P︸︷︷︸
shares of stock

dP + Ig

G︸︷︷︸
shares of option

dG

= Ip

P
(µP (t) dt+ σP (t) dB(t)) + Ig

G
(µgGdt+ σgGdB(t))

= (Ipµ+ Igµg) dt+ (Ipσ + Igσg) dB(t).
We choose Ipσ + Igσg = 0, so

dI = Ig

(
µg − µ

σg

σ

)
dt.

Notice that this requires being able to buy and sell assets in continuous-time. Then the same dollar amount
invested in the bond produces the following return:

I

D
dD(t) = I

D
rD dt = r(Ig + Ip)] dt = rIg

(
1− σg

σ

)
dt.

The above two returns must equal to each other to rule out arbitrage:

µg − µ
σg

σ
= r

(
1− σg

σ

)
.

This implies
µg − r = µ− r

σ
σg,

so
σ2P 2

2
∂2G

∂P 2 + rP
∂G

∂P
+ ∂G

∂t
− rG = 0. (8)

Equation (8) can be solved subject to the boundary conditions
G(P (T ), T ) = max{P (T )−X, 0)},

G(0, t) = 0.
The solution is:

G(P (t), t) = P (t)Φ(d1)−Xe−r(T −t)Φ(d2)

d1 = logP (t)/X + (r + σ2/2)(T − t)
σ
√
T − t

d2 = logP (t)/X + (r − σ2/2)(T − t)
σ
√
T − t

,

where Φ(·) is the standard normal CDF, and (T − t) is the time to maturity.
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Remark 7.14. Because of the assumption that the market is complete, the option is redundant. Hence, its
price does not depend on the agents’ preferences.

7.5.1 The Martingale Approach
We have showed: There exists a portfolio that eliminates the risk from the Brownian motion: the risk is zero
for every state and all t. Consider a probability measure that assigns zero probability to the same events
as the real-world probability measure. Denote it by Q∗. Then, a portfolio eliminates risk under Q iff it
eliminates risk under Q∗. To apply the arbitrage argument, it does not matter which probability measure we
are working with. It turns out to be computationally useful to consider the risk-neutral measure. Define

B∗(t) = B(t)− µ− r
σ

t.

Then, Girsanov’s theorem says that ∃Q∗ under which B∗(t) is a Brownian motion. Thus,

dP (t) = rP (t) dt+ σP (t) dB∗(t).

The stock and bond now both have r as their instantaneous expected rate of return under the new measure.
Thus, to rule out arbitrage, the option must also have r as its instantaneous expected rate of return. Hence

G(t) = e−r(T −t)EQ∗ [max{P (T )−X, 0}],

where conditional expectation is taken w.r.t. the risk-neutral measure. In practice, if we can simulate the
risk-neutral measure, then we can obtain the option price.

7.5.2 Violations of the Model
The Black-Scholes model will fail under any of the following four violations of its assumptions. These levels
become increasingly serious and difficult to remedy as we move down the list:

1. The local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of the concurrent underlying asset price or time.

2. The local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of the prior path of the underlying asset price.

3. The local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of a state-variable which is not the concurrent underlying asset price or the prior path of
the underlying asset price; or the underlying asset price, interest rate or payout rate can experience
jumps in level between successive opportunities to trade.

4. The market has imperfections such as significant transactions costs, restrictions on short selling,
taxes, noncompetitive pricing, etc.

Remark 7.15. Although, violations of types 1 and 2 still leave the arbitrage reasoning-the essence of the
Black-Scholes argument-intact, type 2 violations lead perhaps to insurmountable computational problems.
Violations of type 3 are far more serious, since they destroy the arbitrage foundations of the Black-Scholes
model and have left researchers so far with two unpalatable alternatives: either an equilibrium model in which
investor preferences explicitly enter, or other securities in addition to the underlying and riskless assets must
be included in the arbitrage strategy. Violations of type 4 are the worst, because their effects are notoriously
difficult to model and they typically lead only to bands within which the option price should lie.

7.6 Estimating the Parameters of the Black-Scholes Model
From an econometrician’s perspective, if we know the price of an option, we can estimate the parameters of
an option. The main challenge is that we have a continuous-time model, but only discrete-time observations.

Consider estimating µ and σ2 in Equation (7). A natural approach is to obtain a discrete approximation to
the continuous-time model and then apply MLE to this approximation. Suppose h is a time interval, e.g., 5
minutes or a day. Applying the Euler discretization to the model, we have

P (t+ h)− P (t) ≈ µP (t)h+ σP (t)(B(th)−B(t)),

or
P (th)− P (t)

P (t) ≈ µh+ σ(B(t+ h)−B(t)),
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and the approximation error decreases to zero as h→ 0. Suppose the prices are available for this interval
frequence, i.e., we have Pk = P (kh), k = 0, 1, . . . , n with n = T/hl Denote the simple returns by Rk(h) :=
Pk/Pk−1 − 1. Then since B(th)−B(t) ∼ N (0, h) i.i.d., the approximating log-likelihood for {Rk(h)} is

L(µ, σ) = −n2 log 2πσ2h− 1
2σ2h

n∑
k=1

(Rk(h)− µh)2.

The MLE is

µ̂ = 1
nh

n∑
k=1

Rk(h),

σ̂2 = 1
nh

n∑
k=1

(Rk(h)− µ̂)2.

We notice that this estimator is inconsistent. For a fixed h > 0, by the LLN,

µ̂
p−→ 1
h
E[Rk(h)],

σ̂2 p−→ 1
h

Var[Rk(h)].

Now compare µ̂, σ̂2 with the model’s parameters. By the solution to the SDE, we have

Pk = P0 exp
(
σB(kh) +

(
µ− 1

2σ
2
)

(kh)
)
.

Therefore, ∀h > 0, Rk(h) is log-normally distributed with
E[Rk(h)] = eµh − 1,

Var[Rk(h)] = e2µh(eσ2h − 1).

Thus, µ̂ ̸ p−→ µ and σ̂2 ̸ p−→ σ2. Furthermore, the estimates are biased for fixed h; however, the bias converges to
0 as h→ 0. Now we study the asymptotic distribution of (µ̂− µ) as T →∞ and h→ 0:

√
nh(µ̂− µ) =

√
nh

(
1
n

n∑
k=1

Rk(h)− E[Rk(h)]
h

+ E[Rk(h)]
h

− µ

)

= 1√
n

n∑
k=1

Rk(h)− E[Rk(h)]√
h

+
√
nh

(
E[Rk(h)]

h
− µ

)
.

The first term converges to N (0, σ2), and the second term is O(
√
nhh) = O(T 1/2h). Therefore, if T →∞

and T 1/2h→ 0, i.e., we sample more frequently as the sample size increases, then
√
nh(µ̂− µ) d−→ N (0, σ2).

Remark 7.16. In this example, the bias is O(h).
Now, instead of simple returns, we use continuously compounded returns rk(h) = logPk/ logPk−1 for
estimation. Applying Ito’s formula, we have

d logPt = αdt+ σ dB(t),
where α = µ − σ2/2. Thus, logPk/Pk−1 is normally distributed with mean αh and standard error σ

√
h.

Then, the sample standard deviation of rk(h)/
√
h is an unbiased estimate of σ. In fact, it is the MLE of σ.

The log-likelihood function is given by

L(µ, σ) = −n2 log(2πσ2h)− 1
2σ2h

n∑
k=1

(rk(h)− αh)2,

and the MLEs are

α̂ = 1
nh

n∑
k=1

rk(h)

σ̂2 = 1
nh

n∑
k=1

(rk − α̂h)2.

The estimates are unbiased and efficient.
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7.7 Estimation and Inference
Suppose our model is

dXt = µ(Xt, t; θ) dt+ Σ(Xt, t; θ) dWt,

where Wt is a vector of independent Brownian motions, the drift vector µ ∈ RK and the diffusion matrix
Σ ∈ RK×K are functions of the vector Xt, time t, and an L-dimensional parameter vector θ whose true value
is θ0. This model is a multivariate diffusion: µ,Σ depend on the underlying process only through the most
recent value, and there are no latent processes such as volatility processes. The goal is to estimate θ.
There are four estimation approaches:

1. Simulated MLE: First, obtain a discrete-time approximation to the continuous-time model. Next,
use simulations to compute the likelihood function for this discrete-time model.

2. MCMC: First, obtain a discrete-time approximation to the continuous-time model. Next, use MCMC
to sample from the posterior distribution of θ, given this discrete-time approximation and some priors
on parameters. Finally, compute the mean (or mode) of this posterior distribution as an estimate for
θ.

3. Analytic approach: Compute the likelihood analytically without any discretization by exploiting the
structure of the model.

4. Simulated methods of moments (SMM).
Remark 7.17. We will focus on the first and third approaches. Later, we will discuss the second approach
in the context of stochastic volatility models.

7.7.1 Simulated MLE
Let the available sample be Xt0 , . . . , XtN

. Suppose we have daily or weekly observations. The joint density
of Xt0 , . . . , XtN

is

f(Xt0 , . . . , XtN
; θ0) = f(Xt0 ; θ0)

N−1∏
n=0

f(Xtn+1 | Xtn
, . . . , Xt0 ; θ0)

= f(Xt0 ; θ0)
N−1∏
n=0

f(Xtn+1 | Xtn
; θ0),

where the last equality uses the DGP’s Markovian property. Notice that we cannot analytically compute
f(Xtn+1 | Xtn

; θ0) because the DGP is in continuous time. One approach is to obtain a discrete time
approximation to the model, and then compute the transition density of this approximation. Consider just
the interval [t0, t1]. Divide this interval into M sub-intervals of length h = 1/M . Denote these intervals by
[t0, t0 + h], . . . , [t0 + (M − 1)h, t1]. Note that we only observe data at times t0 and t1.
The estimation procedure is as follows:

1. Pick an initial value for θ.
2. For each tn with n = 1, . . . N , start at tn and apply the Euler approximation M − 1 times to produce

a chain of values:
Xtn → Xtn+h → · · · → Xtn+(M−1)h.

Denote the realization of Xtn+(M−1)h by z(1). Repeat this for S times to obtain a sample of
realizations:

{z(1), . . . , z(S)}.

3. Compute a sample average to approximate f(Xtn+1 | Xtn
; θ0):

f(Xtn+1 | Xtn
; θ0) =

∫
f(Xtn+1 | Xtn+(M−1)h; θ0)f(Xtn+(M−1)h | Xtn

) dXtn+(M−1)h

fM,S(Xtn+1 | Xtn
; θ) = 1

S

S∑
s=1

ϕ(Xtn+1 ; z(s) + µ(z(s); θ)h,Σ(z(s); θ0)Σ(z(s); θ0)⊤h),

where ϕ is the standard normal density.
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4. Compute the approximate log-likelihood

LM,S(θ) =
N−1∑
n=1

log fM,S(Xtn+1 | Xtn ; θ).

5. Repeat steps 1-4 for different θ and search for the value that maximizes the above approximate
likelihood:

θ̂M,S = arg max
θ

LM,S(θ).

Remark 7.18. As we vary the parameters, we should use the same error terms (εt) in the Euler discretization
step to generate z(s). This produces densities that are smooth w.r.t. the parameters. Two tuning parameters
are involved: M controls the discretization bias, while S determines the quality of the simulation approximation.
In theory, we need M →∞ and S →∞ for their effects to be negligible. In practice, a small M tends to
work well for daily observations and a large S, e.g., S > 5000 tends work for empirically relevant applicatons.
We have the following assumptions:

1. The drift µ and diffusion Σ functions are infinitely differentiable with continuous and bounded
derivatives of all orders.

2. The covariance matrix ΣΣ⊤ is positive definite.
3. θ ∈ Θ, where Θ is a compact set that contains the true θ0 in its interior.
4. The likelihood function is twice continuously differentiable in θ in a neighborhood of the true parameter

vector θ0. Furthermore, the average Hessian has full rank and is bounded for all parameters θ ∈ Θ.
5. ∀λ ∈ RK , N−1λ⊤IN (θ)λ > C > 0, where

IN (θ) = E

[
N−1∑
n=0

∂ ln f(Xtn+1|Xtn ;θ)
∂θ

∂ ln f(Xtn+1 | Xtn
; θ)

∂θ⊤

]
.

6. IN (Θ)−1/2∂
∑N−1

n=0 ln f(Xtn+1 | Xtn
; θ0)/∂θ d−→ N (0, I). (This assumption rules out unit-root type

processes.)

Theorem 7.19. Given Assumptions 1-5, as M →∞ and S →∞, θ̂M,S converges to the maximum likelihood
estimator θ̂, which in turn converges to the true value θ0 as N →∞.
Theorem 7.20. Given Assumptions 1-6, as M,N,S →∞ with N/S1/2 → 0 and N/M → 0, we have

IN (θ)−1/2(θ̂M,S − θ0) d−→ N (0, I),

where I is an identity matrix.
Remark 7.21. The conditions N/M → 0 an N/S1/2 → 0 ensure that the Eueler approximation and the
simulation have negligible effects. They can be relaxed to N1/2/M → 0 and N/S → 0, respectively.

7.7.2 Estimation Based on Analytical Approximations
The SMLE method uses simulations to approximate the transition density. Alternatively, for some models,
we can approximate the transition analytically using a series expansion. This is similar to approximating a
function using a Taylor series, or a Fourier series. The main difference is that the function to be approximated
is now a transitional density. Here, we use Hermite polynomials for our approximation.
Consider a scalar process. The extension to the multivariate case is NOT straightforward. The main step is
to compute the transition density f(Xtn+1 | Xtn ; θ) using a Hermite polynomial approximation. For a density
f(x), we obtain an approximation using a truncated series:

f(x) ≈ ϕ(x)
J∑

j=0
βjHj(x),

where Hj is the jth order Hermite polynomial. The approximation is most effective if the target density is
close to the standard normal. However, f(Xtn+1 | Xtn

; θ) is far from N (0, 1) for two reasons: the volatility
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σ(Xt; θ) is not constant and f(Xtn+1 | Xtn ; θ) is peaked around Xtn if h is small. The proposed solution is to
first transform the density using a change of variables technique, apply the approximation, and then reverse
the transformation.
Define the Lamperti transform as

Yt = γ(Xt, θ) =
∫ Xt 1

σ(Xu; θ) du.

Applying Ito’s lemma, we have

dYt = 1
σ(Xt; θ)

dXt −
1
2
∂σ(Xt; θ)
∂Xt

dt (9)

=
[
µ(Xt; θ)
σ(Xt, t; θ)

− 1
2
∂σ(Xt; θ)
∂Xt

]
dt+ dWt

=
[
µ(γ−1(Yt; θ); θ)
σ(γ−1(Yt; θ); θ)

− 1
2σX(γ−1(Yt; θ); θ)

]
dt+ dWt.

The process Yt has unit diffusion. Consequently, the conditional distribution of Yt is approximately normal.
Yt is closer to a normal random variable than Xt is. However, it is still not practical to expand the density of
Yt, because it gets peaked around the conditional value y0 as the sampling interval gets small. To fix this,
introduce an additional transformation:

Zt = h−1/2(Yt − y0).
Once an approximation to the transition density of Zt are constructed, we reverse the change of variables to
obtain the approximation for Xt.
The details on the implementation are as follows:

1. Start with the first time interval [t0, t1].
2. Let fY (y | y0; θ) denote the conditional density of Yt1 |Yt0 =y0 evaluated at Yt1 = y. Define fX and fZ

in a similar way.
3. (X → Y → Z): Construct a Hermite polynomial approximation to fZ(z | y0; θ) as follows:

f
(J)
Z (z | y0; θ) = ϕ(z)

J∑
j=0

βj(y0; θ)Hj(z),

βj(y0; θ) = 1
j!

∫ ∞

−∞
Hj(z)fZ(z | y0; θ) dz,

where ϕ(z) is the standard normal density, and β
(j)
Z (y0; θ) can be computed approximately using

simulation or a Taylor expansion based on Equation 9.
4. (Z → Y ): Apply the change of variable technique to obtain an approximation to fY (h, y | y0; θ) from
f

(J)
Z (z | y0; θ):

f
(J)
Y (y | y0; θ) = h−1/2f

(J)
Z (h−1/2 + (y − y0) | y0; θ).

5. (Y → X): Compute fX(x | x0; θ) using the Jacobian formula:

f
(J)
X (x | x0; θ) = σ(x; θ)−1f

(J)
Y (γ(x, θ) | γ(x0, θ); θ).

6. Repeat steps 3-5 for all sampling intervals. Compute the approximation log-likelihood using f (J)
X (x |

x0; θ) using

LJ(θ) =
N−1∑
n=0

log f (J)
X (Xtn+1 | Xtn

; θ).

7. Maximize LJ(θ) numerically to obtain the estimator.

Remark 7.22. Under some regularity conditions, f (J)
X (h, x | x0; θ) converges to fX(h, x | x0; θ) as J increases.

The maximizer of the approximate likelihood converges to the MLE. This approach, though elegant, is more
restrictive than the SMLE approach. At the same time, using a series to approximate an intractable function
is a powerful idea, and it is useful in much broader contexts.
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8 Bayesian Inference
8.1 General Statistical Theory
In a Bayesian framework, a parameter is a random variable with an unknown distribution. A researcher
approaches the inference problem with a model and a prior belief about the parameter, before looking at the
data. This prior belief is then updated by the data using the likelihood function implied by the model. The
updated distribution is called the posterior distribution. The updating follows Bayes rule:

Pr[θ | y] = Pr[y | θ]π(θ)
Pr[y] ,

where θ is the parameter, y is the data sample, Pr[y|θ] is the likelihood function, π(θ) is the prior, Pr[y] =∫
Pr[y|θ]π(θ) dθ is the marginal distribution, and Pr[θ|y] is the posterior distribution. Generally, we use

Pr[θ | y] ∝ Pr[y | θ]π(θ)

because the marginal distribution is not of interest (and difficult to compute).
A Bayes estimator for θ is an estimator or decision rule that minimizes the Bayes risk among all estimators.
A Bayes estimator depends on three factors: the prior belief, the model (equivalently the likelihood), and
the loss function. The resulting Bayes estimator is optimal in the sense that no other estimator can yield a
smaller loss under these three conditions.
Suppose the prior distribution for θ is π(θ). Let θ̂(y) be an estimator of θ based on a sample y. Let L(θ, θ̂(y))
be a loss function. Then the risk under this loss function is

R(θ, θ̂) = E
Pr[y|θ]

[
L(θ, θ̂(y)

]
.

The Bayes risk of θ̂ is defined as
rθ(θ̂) =

∫
R(θ, θ̂)π(θ) dθ.

The Bayes estimator minimizes the above risk among all estimators.
Example 8.1. Suppose we use squared error loss. Then∫

L(θ, θ̂) Pr[θ | y] dθ =
∫

(θ − θ̂(h)2 Pr[θ | y] dθ.

Clearly, the Bayes estimator is the posterior mean θ̂(y) = E[θ | y].
Suppose the distribution of θ is absolutely continuous. Let Bε(a) denote an open ε-neighborhood of a. Then,
the zero-one loss function is given by

L = 1− 1θ(Bε(a)),
where 1θ(Bε(a)) = 1 iff θ ∈ Bε(a).
Example 8.2. Suppose Pr[θ | y] is continuous with a mode at θM . Then, the Bayes estimator under a
zero-one loss function, θ̂(y, ε), satisfies

lim
ε→0

θ̂(y, ε) = θM .

Thus, the posterior mode is the limit of Bayes estimators under a zero-one loss function.
The Bernstein-von Mises theorem provides the large sample properties of the posterior distribution. It plays
the role of the frequentist-CLT for the Bayesian setting. In particular:

• If there are many i.i.d. observations governed by a smooth, finite-dimensional statistical model, the
Bayesian estimate and the maximum likelihood estimate will be close to each other.

• Furthermore, the posterior distribution of the parameter vector around the posterior mean or mode
will be close to the distribution of the maximum likelihood around the true value.

A statistical model {Pθ | θ ∈ Θ} is called differentiable in quadratic mean if there exists a measurable
vector-valued function gθ0 s.t. as θ → θ0,∫ (

√
pθ −

√
pθ0 −

1
2(θ − θ0)⊤gθ0

√
pθ0

)
dµ = o(∥θ − θ0∥2).
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Theorem 8.3 (Bernstein-von Mises theorem). Let the experiment {Pθ | θ ∈ Θ} be differentiable in quadratic
mean at θ0 with nonsingular Fisher information matrix Iθ0 , and suppose that there exists a sequence of
uniformly consistent tests ϕn for testing H0 : θ = θ0 against H1 : ∥θ − θ0∥ > ε ∀ε > 0. Furthermore, let the
prior measure be absolutely continuous in a neighborhood of θ0 with a continuous positive density at θ0. Then,
the corresponding posterior distributions satisfy

∥P√
n(θn−θ0)|y1,...,yn

−N(∆n,θ0 , I
−1
θ0

)∥ → 0,

where ∆n,θ0 = 1√
n

∑n
i=1 I

−1
θ0
gθ0(yi) with gθ0 being the score of the model.

8.2 General Sampling Methods
In practice, the posterior distribution Pr[θ | y] is often a complicated object, so we need effective sampling
methods. Write out the parameter vector as

θ = (θ1, . . . , θp).

Suppose the posterior density (omitting the dependence on y to simplify notation) is

Pr[θ1, . . . , θp]. (10)

Let
Pr[θj | θ1, . . . , θj−1, θj+1, . . . , θp] (11)

denote the conditional density of θj given the remaining parameters. MCMC addresses the sampling problem
by breaking the joint distribution (10) into its complete set of conditionals (11), which are typically of lower
dimensions and easier to sample from. The Gibbs sampler and the Metropolis-Hastings methods are two of
the most commonly used samplers.

8.2.1 Gibbs Sampler
Without loss of generality, suppose p = 2. The steps are as follows:

1. Choose a set of initial values, say θ0
1 and θ0

2.

2. Draw θ1
1 ∼ Pr[θ1 | θ0

2].

3. Draw θ1
2 ∼ Pr[θ2 | θ1

1].

4. Repeat steps 2 and 3 N times with the values of the conditioning variables updated sequentially.

8.2.2 Metropolis-Hastings
Suppose we want to obtain a sample from the distribution of θ = (θ1, . . . , θp). The Metropolis method uses a
proposal distribution to generate draws. Let q(y | x) denote the density of the proposal distribution, which
needs to be symmetric in x, y. The steps are as follows:

1. Draw an initial value, θ0, and set t = 0.

2. Draw θ∗ ∼ q(· | θ0).

3. Calculate the ratio r = Pr[θ∗]/Pr[θ0].

4. If r ≥ 1, set θ1 = θ∗. Otherwise, set θ1 = θ∗ w.p. r and θ1 = θ0 w.p. 1− r.

5. Increase t by one and proceed to step 2 to draw from q(· | θt−1). Continue.

To implement this in practice, we need to be able to sample from q(· | θt) and to evaluate the ratio
r = Pr[θ∗]/Pr[θt]. We do note sample directly from Pr[θ].

The Metropolis-Hastings method is a generalization of the Metropolis algorithm. q(x | y) is no longer required
to be symmetric. To implement this method, only the third step needs to be modified, where we set

r = Pr[θ∗]q(θt | θ∗)
Pr[θt]q(θ∗ | θt) .

A large number of Metropolis-Hastings algorithms have been proposed, e.g., the independence M-H and the
random walk M-H samplers.
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8.2.3 Markov Chains
We now examine why the Gibbs and M-H samplers are valid using a Markov chain framework. A homogeneous
Markov chain can be uniquely characterized by a transition kernel, defined as

K(x, y) = Pr[Xt+1 = y | Xt = x].
Suppose the distribution at time t is given by pt and at t + 1 by pt+1. Then, these two distributions are
obviously related by

pt+1(y) =
∫
K(x, y)pt(x) dx.

If pt+1 = pt = p, then the distribution p is called a stationary distribution of the chain. Formally, p is called
a stationary distribution of a Markov chain if

p(y) =
∫
K(x, y)p(x) dx.

A Markov chain converges to its stationary distribution if the following conditions hold:
• The chain is irreducible, i.e., it is possible to get to any state from any state.
• It is aperiodic, i.e., Pr[Xt+m = x | Xt = x] > 0 ∀m large enough.

Theorem 8.4 (Law of large numbers for Markov chains, Johannes and Polson). Suppose Xt is an ergodic
chain with stationary distribution π and suppose f is a real-valued function with Eπ[|f |] <∞. Then for all
Xt with any initial starting value X0,

lim
N→∞

1
N

N∑
t=1

f(Xt) =
∫
f(x)π(x) dx.

Theorem 8.5 (Central limit theorem for Markov chains, Johannes and Polson). Suppose Xt is an ergodic
chain with stationary distribution π and suppose f is a real-valued function with Eπ[|f |] <∞. Then ∃σf ∈ R
s.t. for all Xt with any initial starting value X0,

√
N

(
1
N

N∑
t=1

f(Xt)−
∫
f(x)π(x) dx

)
d−→ N (0, σ2

f ).

8.3 Applications
We estimate continuous-time asset pricing models from a Bayesian perspective. We start with simple models,
and then make them progressively more complex. We assume the observations are at a daily frequency and
that the Euler discretization provides an adequate approximation to the continuous time model.
The essential steps in the MCMC estimation are as follows:

1. Write out the price dynamics and state evolution in a state space form.
2. Characterize the joint distribution by its complete set of conditionals.
3. Use the Metropolis of Gibbs sampler to generate draws from the posterior.

8.3.1 GBM
The price St follows the SDE:

d logSt = µdt+ σ dW P
t .

In discrete time, we have
Yt = log St

St−1
= µ+ σεt,

where εt ∼ N (0, 1). For a sample Y = (Y1, . . . , YT ), the likelihood is given by

f(Y | µ, σ2) =
(

1
2πσ2

)T

exp
(
− 1

2σ2

T∑
t=1

(Yt − µ)2

)
.

Suppose we use independent priors, s.t. Pr[µ, σ2] = Pr[µ] Pr[σ2], Consequently,

Pr[µ, σ2 | Y ] ∝ f(Y | µ, σ2) Pr[µ] Pr[σ2].
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Remark 8.6. Because Pr[µ, σ2 | Y ] is not a standard distribution, it is hard to sample from it directly.
Instead, we apply the Gibbs sampler to sample from the conditionals Pr[µ | σ2, Y ] and Pr[σ2 | µ, Y ] iteratively.
Suppose we use a normal prior for µ: µ ∼ N (µ0, σ

2
0) and an inverse Gamma prior for σ2: σ2 ∼ IG(α, β).

Then,

µ | σ2, Y ∼ N

(
σ2

0
∑T

t=1 yt + σ2µ0

Tσ2
0 + σ2 ,

1
T/σ2 + 1/σ2

0

)
,

σ2 | µ, Y ∼ IG

(
T

2 + α,
1
2

T∑
t=1

(Yt − µ)2 + β

)
.

8.3.2 GBM and Black-Scholes
Now we incorporate option data into data estimation. The price of a call option with strike K is given by

Ct = BS(σ, St) = StΦ(d1)− er(T −t)KΦ(d1 − σ
√
T − t),

where we assume the continuously compounded interest rate r is observed. The discrete-time model is:

log St

St−1
= µ+ σεt

Ct = BS(σ, St) + εc
t ,

where εt ∼ N (0, 1) and εc
t ∼ N (0, σ2

c ). In this discretization, we assume that option prices are observed with
normally distributed errors. We have

Pr[Ct | St, µ, σ
2, σ2

c ] ∝ exp
(
− 1

2σ2
c

(Ct −BS(σ, St))2
)
.

The conditionals for the posterior distribution are Pr[µ | σ2, S],Pr[σ2
c | σ2, S, C],Pr[σ2 | µ, σ2

c , S, C]. We use
a Normal prior for µ and inverse Gamma priors for σ2

c , σ
2. Note that the first two priors can be sampled

directly. The third distribution depends both on stock and option price equations. We use M-H to sample σ2.
Note that

Pr[σ2 | µ, S] ∝ f((S | µ, σ2) Pr[σ2] ∼ IG.
The M-H algorithm works as follows:

1. Draw (σ2)j+1 ∼ σ2 | µj+1, S.
2. Accept (σ2)j+1 with probability

r = min
{

Pr[C | (σ2
c )j+1, (σ2)j+1, S]

Pr[C | (σ2
c )j+1, (σ2)j , S] , 1

}
.

8.3.3 Merton’s Jump Diffusion Model (Multivariate)
A k-vector of asset prices solves:

dSt = µSt dt+ σSt dW
P
t + d

 NP
t∑

j=1
Sτj−(expZP

j − 1)

 ,

where W P
t is a vector of standard Brownian motion, Σ = σσ⊤ is the diffusion matrix, NP

t ∼ Pois(λ) is a
Poisson process, and ZP

j ∼ N (µJ ,ΣJ) is the jump size.
Solving the SDE, we have

log St

St−1
= µ+ σεt +

NP
t∑

j=NP
t−1+1

ZP
j ,

where the drift vector has been redefined to account for the variance correction. Assuming there is at most
one jump per time interval, we obtain the following model:

Yt := log St

St−1
= µ+ σεt + JtZt,
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where Jt ∼ Bern(λ). Define θ = (µ,Σ, λ, µJ ,ΣJ ). The jump size and location, Jt, Zt, are latent state variables.
We treat them as additional parameters. This is called data-augmentation. Let Xt = (Jt, Zt). The MCMC
algorithm will sample from Pr[θ,X | Y ]. We use the conjugate priors:

Σ ∼ Inverse Wishart;µ | Σ ∼ N (a, bΣ)
λ ∼ Beta

Σj = Inverse Wishart;µJ | Σj ∼ N (aJ , bJΣ).

The complete set of conditionals are Pr[µ,Σ | X,Y ],Pr[µJ ,ΣJ | J, Z],Pr[λ | J ],Pr[J | θ, Z, Y ],Pr[Z | J, θ, Y ].
The first two distributions can be sampled directly, as in the Black-Scholes case. Then,

Pr[λ | J ] ∝ β(α∗, β∗)

Pr[Zt | Jt, θ, Yt] ∝ exp
(
−1

2 [r⊤
t Σ−1rt + (Zt − µJ)⊤Σ−1

J (Zt − µJ)]
)

Pr[Jt = 1 | θ, Zt, Yt] ∝ λ exp
(
−1

2(Yt − µ− Zt)⊤Σ−1(Yt − µ− Zt)
)
,

where rt = Yt − µ− ZtJt.

8.3.4 Time-Varying Equity Premium
The Black-Scholes model assumes that the drift and diffusion terms are constant. Now we allow the drift to
vary over time:

dSt

St
=
(
rt + µt + 1

2σ
2
)
dt+ σ dW s

t

dµt = kµ(θµ,−µt) dt+ σµ dW
µ
t ,

where rt is the observed risk-free rate, and the two Brownian motions can be correlated.
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