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Motivation: computational biology applications

Goal: understand biological processes
Issue: we cannot observe full cell development process

Data consists of population snapshots at different time points
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Figure from Schiebinger et al., 2019
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What is trajectory inference?

Let X be the ambient space and Q = (([0,1] : X) be the path space
Goal: estimate the ground truth stochastic process P € P(Q2)

Ground truth Observations Reconstructed law on paths

Figure from Lavenant et al., 2021
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Mathematical model of trajectory inference

Let X; € X be an unobserved state vector evolving according to the
following SDE for t € [0, 1]:

dX; = —=(t, Xy)dt — VV(t, X;)dt + /7dB; (1)

initial condition Xo ~ o

divergence-free velocity prior = € C([0,1] x X : X') is known

potential W € C2([0,1] x X) is unknown

e 7 > 0 is the variance, {B;} is a standard Brownian motion
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Mathematical model of trajectory inference

Let X; € X be an unobserved state vector evolving according to the
following SDE for t € [0, 1]:

dX; = —=(t, Xy)dt — VV(t, X;)dt + /7dB; (1)

@ initial condition Xy ~ pg

o divergence-free velocity prior = € (([0,1] x X : X) is known
e potential W € C%([0,1] x &) is unknown

e 7 > 0 is the variance, {B;} is a standard Brownian motion

This is our ground truth P € P(Q)
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Measurement model

Smooth function g: X — ) transforming X; into the observation space V-

Ye = g(Xt)

Latent Trajectory Inference 6/35



Measurement model

Smooth function g: X — ) transforming X; into the observation space V-

= g(Xt)

T observation times with 0 < t] < T <1, and we observe N7 i.i.d.
samples from the marginal distribution of Y;:

i d. .
{ ’a_/ _] 1I'I\‘ gﬁPtT = Qt‘.T‘
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Measurement model

Smooth function g: X — ) transforming X; into the observation space V-

Ye = g(Xt)

T observation times with 0 < t] < --- < t1 <1, and we observe N i.i.d.
samples from the marginal distribution of Y;:

T i.i.d. .
{ ijJj= 1 ~ gﬁPtIT = Qt‘T

Smooth empirical distribution by h-wide heat kernel ®:

1 M
= NTZ(S

I =1
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Measurement model

Smooth function g: X — ) transforming X; into the observation space V-

Ye = g(Xt)

T observation times with 0 < t] < --- < t1 <1, and we observe N i.i.d.
samples from the marginal distribution of Y;:

T i.i.d. .
{ ijJj= 1 ~ gﬁPtIT = Qt‘T

Smooth empirical distribution by h-wide heat kernel ®:

1 M
= b, Syt
AN
Goal: recover P from (p{,...,pT) and the known velocity field =
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Observability assumption

W is unknown, but restricted to a class Cy.

(g,=,Cy) is Cy-marginal-observable if, given g, =, o, and all marginals
Q: = gP; of Y; for all t € [0,1], the marginals P; of X; are uniquely
determined for all ¢ € [0, 1]

With this assumption, we can infer the latent dynamics solely from the
marginals Q;
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Observability assumption

W is unknown, but restricted to a class Cy.

(g,=,Cy) is Cy-marginal-observable if, given g, =, o, and all marginals
Q: = gP; of Y; for all t € [0,1], the marginals P; of X; are uniquely
determined for all ¢ € [0, 1]

With this assumption, we can infer the latent dynamics solely from the
marginals Q;

Setting for synthetic experiments:
@ = is linear, time-invariant and W is time-invariant
e gis of the form (xi,...,x,) — (x1,...,xk) for some k< n

@ “classical observability” holds
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Why is our setting important?

Goal: recover P from (5], ..., pT) and the known velocity field =
Our contributions:
@ Trajectory inference without observing whole particles

@ Formulate as entropy minimization problem with respect to reference
measure with drift
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Why is our setting important?

Goal: recover P from (5], ..., pT) and the known velocity field =
Our contributions:
@ Trajectory inference without observing whole particles

@ Formulate as entropy minimization problem with respect to reference
measure with drift

Applications:
@ More robust optimization using drift prior

@ Smoother trajectories and more accurate prediction of final particle
positions

@ Privacy: don't need to release full data
@ Study diffusion models

o Interpretability: biology datasets are very high dimensional
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Outline of algorithm

Algorithm Framework for latent trajectory inference
Require: Collection of observations (p1, .. ., pt), velocity prior =, number of
iterations for MFL dynamics N, number of particles m, entropy parameter

A

Initialize m particles for each t: (i, .., M) € X™*t
for N iterations do
for i e [t— 1] do > At = tiv1 — t
{Gik} 3l n — HI=(ti, Mipae) — Mg+ (5, M)
T: + Sinkhorn(ﬁv;, ﬁ’l,’+1, Ci, A At;) > T; € I'I(ﬁv,-, r'h,-+1)
end for
m < MFL(m, T, p) > m = (My,..., M), etc.
end for

Output collection of particles m, trajectories Ts_10---0 Ty
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Data-fitting term

Let At;:= t,+1 t]. Fit function: Fit** : P(Y)T — R:

FitA,U(QtlT, ceey Qt; Z AtDF° (gﬁRtT P, )’
1_1

2
DF(gRy. ") = [, - log l/x P ( e ) th,r<x>] ;" ()
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Data-fitting term

Let At;:=t]; — t]. Fit function: Fit* : P(¥)" — R:

Fit)\,U(QtlT’ e Qt; Z AtDF? (gﬁRtT p, ),
1_1

F7(giR.r. p]"") —/ log l/?f exp( Hg(x2) 2y||2> th,.T(X)l dpl""(y)

o Negative log-likelihood under the noisy observation model
V7. = g(X]) + 0Z;j, where Y], is the observation and Z;; "~ 5N, 1).

e DF7 is jointly convex in (R,r, ﬁ,-’ ) and linear in /3,-’

Chizat et al., 2022
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Min-entropy estimator

Functional 7 : P(Q2) — R
F(R) = FitA’”(Qtlr, Q) + TH(RIW=7), RTM = argmin F(R)

o W=7 € P(Q) is the law of the SDE dZ; = —=(t, Z;) dt + /7 dB; at
uniform initialization

e H(u|lv) = [log(du/dv) du is relative entropy

o Fit term on previous slide
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Min-entropy estimator

Functional 7 : P(Q2) — R
F(R) = Fit/\’”(Qtlr, Q) + TH(RIW=7), RTM = argmin F(R)

o W=7 € P(Q) is the law of the SDE dZ; = —=(t, Z;) dt + /7 dB; at
uniform initialization

e H(u|lv) = [log(du/dv) du is relative entropy
o Fit term on previous slide

Theorem (Consistency, Lavenant et al., 2021, Thm. 2.3)

If {t]}icim becomes dense in [0,1] as T — oo,

lim lim RTPM = p
A,h—0 T—o00

weakly, almost surely.
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High level ideas for proof of consistency

lim lim RTPM =p
A\ h—0 T—oo

Tools: stochastic calculus, '-convergence, analysis, heat flow on manifolds
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High level ideas for proof of consistency

lim lim RTPM =p
Ah—0 T—o0

Tools: stochastic calculus, '-convergence, analysis, heat flow on manifolds
@ Stochastic arguments

o P follows the SDE dX; = —=(t, X;)dt — VV(t, X;)dt + /7dB; and
W=7 follows the SDE dZ; = —=(t, Z;)dt + \/7dB;

o Drift term in Z; cancels out drift term of X;, e.g. check via Girsanov
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High level ideas for proof of consistency

lim lim RTPM =p
Ah—0 T—o0

Tools: stochastic calculus, '-convergence, analysis, heat flow on manifolds
@ Stochastic arguments

o P follows the SDE dX; = —=(t, X;)dt — VV(t, X;)dt + /7dB; and
W=7 follows the SDE dZ; = —=(t, Z;)dt + \/7dB;

o Drift term in Z; cancels out drift term of X;, e.g. check via Girsanov
Q Take T — x
e Sequence of discrete minimizers converges to continuous minimizer

o Contraction for minimization problem under heat flow (path-space
counterpart for contraction of entropy under heat flow)
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High level ideas for proof of consistency

lim lim RTPM =p
Ah—0 T—o0

Tools: stochastic calculus, '-convergence, analysis, heat flow on manifolds
@ Stochastic arguments

o P follows the SDE dX; = —=(t, X;)dt — VV(t, X;)dt + /7dB; and
W=7 follows the SDE dZ; = —=(t, Z;)dt + \/7dB;

o Drift term in Z; cancels out drift term of X;, e.g. check via Girsanov
Q Take T — x
e Sequence of discrete minimizers converges to continuous minimizer

o Contraction for minimization problem under heat flow (path-space
counterpart for contraction of entropy under heat flow)

© Take \,h— 0

o Use same contraction results and Fatou's lemma
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Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space P(X)" to use the mean-field
Langevin (MFL) dynamics
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Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space P(X)"

to use the mean-field
Langevin (MFL) dynamics

Let 77 := At; - 7 and consider the entropic OT problem:

Tr=(g,v) == min / (% y) dy(xy) + TiH(y|p @ v)
yEN(p,v)
= min - — 1 Q
i i H(ylprp @ v)
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Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space P(X)"

to use the mean-field
Langevin (MFL) dynamics

Let 77 := At; - 7 and consider the entropic OT problem:

Tozur) = min [ S(xy) drlxy) + MO n e )
yeN(p,v)
= min i U ®
L Jmin i H(ylprp @ v)

@ set of transport plans MN(y, )
e cost function & (x,y) := —Atilog(pZ(x y))
@ p: transition probability density of W= over [0, ]

Chizat et al., 2022
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Representer theorem

Optimization over P(Q):
F(R) = Fit**(Qyr. .., Qur) + TH(R|W=T)

Reduced optimization over P(X)7:

T-1 T
W 1 i i i
F(p) := Fit" (ges) + 3 5 Trz(u, pD) 4737 H(u).
i=1 ! i=1
G(p) H(p)
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Representer theorem

Optimization over P(Q):
F(R) = Fit**(Qyr. .., Qur) + TH(R|W=T)

Reduced optimization over P(X)7:

-
F(p) == Fit™ (gp) + Y —— Trz(pO), p) +7 3 H(pu).
j i=1

G(p) H(p)

Theorem (Chizat et al., 2022)

A minimizer for F can be built from a minimizer for F.

Composition of optimal transport plans:
R er(dxi, ..., dxr) = y12(dx1, dx2)y2,3(dxs|x2) - - - yr—1, 7(dxT]xT-1)



Outline of algorithm (review)

Algorithm Framework for latent trajectory inference

Require: (p1,...,p0¢), =, N, m, A

1: Initialize m particles for each t: (fy,..., M) € XY™t

2: for N iterations do

3 for ic [t—1] do

4 {Ciut < SlIMien — BE=(tigr, Mip1k) — Mij+ SEE (L, M)
5: T: + Sinkhorn(ﬁv,-, ﬁ1i+1, Ci, A At,')

6 end for

7. ¢+ MFL(h, T, p)

8: end for

9: Output collection of particles m, trajectories T;_10---0 Ty

Composition of optimal transport plans:
Re,.tr(dxi,. .., dx7) = y12(dx1, dx2)y2,3(dxs|x2) - - - y7—1, T(dxTIxT-1)



Approximation of the entropic OT problem

We still cannot solve FI Why?

ptE is generally not well-defined

Idea: approximate T, =(u,v) using an Euler-Maruyama discretization
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Approximation of the entropic OT problem

We still cannot solve FI Why?
pf is generally not well-defined
Idea: approximate T, =(u,v) using an Euler-Maruyama discretization

Let t; < to, At =ty — t1, pt, follows dZ; = —=(t, Z;)dt + /7dB; from puy, .
Define

EﬁAtﬂtl = ,LLtl - E(tlvl’[/fl) : At
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Approximation of the entropic OT problem

We still cannot solve FI Why?
p: is generally not well-defined

Idea: approximate T, =(u,v) using an Euler-Maruyama discretization

Let t; < to, At =ty — t1, pt, follows dZ; = —=(t, Z;)dt + /7dB; from puy, .
Define

EﬁAtﬂtl = ,LLtl - E(tlaﬂtl) : At
Consider:

min  7iH(v|p- =2 v
i (vlpr(Z5 R @ V)

pt(x, y) is transition density of Brownian motion
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Approximation of the entropic OT problem

We still cannot solve FI Why?
ptE is generally not well-defined
Idea: approximate T, =(u,v) using an Euler-Maruyama discretization

Let t; < to, At =ty — t1, pt, follows dZ; = —=(t, Z;)dt + /7dB; from puy, .
Define

EﬁAtﬂtl = ,LLtl - E(tlaﬂtl) : At

Consider:

min  TiH(y|pr(Z8 1 © v))
yEN(p,v)
pt(x, y) is transition density of Brownian motion

Compare to:

To=(pv) = min THRH|pE(p©v))
yeN(p,v)
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Approximation of the entropic OT problem (cont.)

Theoretical justification:

Proposition

Assume X is a bounded domain, e.g. diam X < +o0o. Let At:=t — t;
and 7; := TAt. Define £€AY(x) := x — =(t1,x) - At. We have

Jim [ [1og(pF(x ) — log(pn(€4(x),) ey = .

Proof idea: use triangle inequality, Taylor approximation, dominated
convergence, and fact that transition kernel is Dirac delta in the limit.

No rate of convergence
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Discussion of approximation

o Computationally, consider: TT,.(EﬂAtputl,Eﬁ_Atﬁutz).

@ Varadhan's approximation:

= 1 At_ At_ 2
Gxy) ~ 5 Hy— 7:(tz,y) —x+ 7:(tl,x)

bl

which holds for 7; small

@ Consistency result: justifies using = in entropic OT problem
@ Intuition for robustness: ]E[Eft/z,utl - Eﬁ_mﬁub)” ~ 0 even if the
particles move a large distance
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Outline of algorithm (review)

Algorithm Framework for latent trajectory inference
Require: (p1,...,p¢), =, N, m, A

1. Initialize m particles for each t: (i, ..., M) € XY™t

2: for N iterations do

3 for i [t— 1] do

4 {Gik} = 3l h — G (tir1, Mipae) — Mg+ 5=, M)
5: T: Sinkhorn(r“n,-, ﬁ7i+1, Ci, A At,')

6 end for

7 m <« MFL(m, T, p)

8: end for

9: Qutput collection of particles m, trajectories T;_10---0 Ty
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Mean-field Langevin dynamics

For convex G: P(X) — R>p, MFL dynamics solves the following
optimization problem:

uer;;zi?x) Fr(p) :== G(p) + H(p)

Solve by discretizing: noisy particle gradient descent
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Mean-field Langevin dynamics

For convex G: P(X) — R>p, MFL dynamics solves the following
optimization problem:

uer;;i?X) Fr(p) :== G(p) + H(p)

Solve by discretizing: noisy particle gradient descent

Let V[u] := %(u) € CH(X) be the first variation of G:

e—0t €

i 2161 = e +) — Gl = [ Va9 o — )

for all p,v.

Chizat et al., 2022
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Noisy particle gradient descent

Optimization by running noisy particle gradient descent on

Gm : (™) — R defined as G(X) := G(fi5), where
20 _ 1%
py = m;%r)

Optimization procedure is:

X0l + 1] = SO - v VORI 1K) + /2007 T 0 24,
a0 = L il 55<§0[k] ie[T],

° )<(1)[0]lld (1)

, m >0 is a step-size, Z( are i.i.d. standard Gaussian
varlables

Taking m — oo yields the mean-field Langevin dynamics

Chizat et al., 2022



Exponential convergence

Theorem (Chizat, 2022)

Let poy € P(X)T be such that F(ug) < oo. Then for e > 0, there exists a
unique solution (p,)s>o to the MFL dynamics. For e > 0, X the d-torus,

and moreover assuming that py has a bounded absolute log-density, it
holds

Fe(ps) — min Fe < e_cs(Fe(uo) — min F,),

where C = Be~®/¢ for some a, § > 0 independently of . and e.

Taking €5 decaying slowly enough, pt. converges weakly to the minimizer

*

.

Chizat et al., 2022; Chizat, 2022
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Sketch of proof of exponential convergence

Chizat, 2022 is workhorse: 3 assumptions to check
@ Smoothness of G: first-variation V is Lipschitz continuous
@ Convexity of Fg and existence of minimizer for F.

o uniform log-Sobolev inequality: 3p, > 0 s.t. Yu € Po(RY), we have
voc e /T ¢ [L(RY) s t.

H(ulv) < ;p/(uru)

In our setting: still true
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Velocity model: robustness

Langevin
Qur Method MFL
30 | 30
20 1 b 201

> 4
10 1 " 10 i "_1{.;

@ Initial condition is at the origin
@ x velocity: 5, y velocity: 7

@ MFL fails to converge
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Velocity model: exponential convergence

T T T T T T T
0 50 100 150 200 250 300 350 400
Iteration
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Circular motion model: recovered position

Position Velocity
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Circular motion model: recovered velocity

Position Velocity
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Future work

Conjecture

For every t1 < tp, with At := t, — t; sufficiently small, we have
|T7'i75(:u’t1aﬂt2) - TTi(E]iAtMt17Ht2)| = O(At)7

’H(V—‘th,tz) (7|Wt1 t2)| = O(At)7

where y= and ~y are the corresponding optimal transport plan to
TT,',E(/*Ltlu Mtg) and TT,'(EjjAtIU/tl } /’Lt2)' reSpeCtiV@/_y,

@ Statistical properties of the estimator

@ Relaxed assumptions on g, =

@ Empirical validation of predicting outcomes of individuals
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Conclusion

@ Trajectory inference without observing whole particles
@ Entropy minimization using reference measure with drift
@ Approximation to obtain well-posed entropic OT problem

o Experimental validation
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Conclusion

@ Trajectory inference without observing whole particles
@ Entropy minimization using reference measure with drift
@ Approximation to obtain well-posed entropic OT problem

o Experimental validation

Questions?
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