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Motivation: computational biology applications

Goal: understand biological processes

Issue: we cannot observe full cell development process

Data consists of population snapshots at different time points

Figure from Schiebinger et al., 2019
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What is trajectory inference?

Let X be the ambient space and Ω = C([0, 1] : X ) be the path space

Goal: estimate the ground truth stochastic process P ∈ P(Ω)

Figure from Lavenant et al., 2021
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Mathematical model of trajectory inference

Let Xt ∈ X be an unobserved state vector evolving according to the
following SDE for t ∈ [0, 1]:

dXt = −Ξ(t, Xt)dt−∇Ψ(t, Xt)dt +
√

τdBt (1)

initial condition X0 ∼ µ0

divergence-free velocity prior Ξ ∈ C([0, 1]×X : X ) is known

potential Ψ ∈ C2([0, 1]×X ) is unknown

τ > 0 is the variance, {Bt} is a standard Brownian motion

This is our ground truth P ∈ P(Ω)
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Measurement model

Smooth function g : X → Y transforming Xt into the observation space Y:

Yt = g(Xt)

T observation times with 0 ≤ tT
1 < · · · < tT

T ≤ 1, and we observe NT
i i.i.d.

samples from the marginal distribution of Yti :

{YT
i,j}

NT
i

j=1
i.i.d.∼ g♯PtT

i
:= QtT

i
.

Smooth empirical distribution by h-wide heat kernel Φh:

ρ̂T
i = Φh

 1
NT

i

NT
i∑

i=1
δYT

i,j


Goal: recover P from (ρ̂T

1 , . . . , ρ̂T
T) and the known velocity field Ξ
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Observability assumption

Ψ is unknown, but restricted to a class CΨ.

(g, Ξ, CΨ) is CΨ-marginal-observable if, given g, Ξ, σ, and all marginals
Qt = g♯Pt of Yt for all t ∈ [0, 1], the marginals Pt of Xt are uniquely
determined for all t ∈ [0, 1]

With this assumption, we can infer the latent dynamics solely from the
marginals Qt

Setting for synthetic experiments:

Ξ is linear, time-invariant and Ψ is time-invariant

g is of the form (x1, . . . , xn) 7→ (x1, . . . , xk) for some k < n

“classical observability” holds
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Why is our setting important?

Goal: recover P from (ρ̂T
1 , . . . , ρ̂T

T) and the known velocity field Ξ

Our contributions:

Trajectory inference without observing whole particles

Formulate as entropy minimization problem with respect to reference
measure with drift

Applications:

More robust optimization using drift prior

Smoother trajectories and more accurate prediction of final particle
positions

Privacy: don’t need to release full data

Study diffusion models

Interpretability: biology datasets are very high dimensional
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Outline of algorithm

Algorithm Framework for latent trajectory inference
Require: Collection of observations (ρ̂1, . . . , ρ̂t), velocity prior Ξ, number of

iterations for MFL dynamics N, number of particles m, entropy parameter
λ
Initialize m particles for each t: (m̂1, . . . , m̂t) ∈ Xm×t

for N iterations do
for i ∈ [t− 1] do ▷ ∆ti := ti+1 − ti
{Cj,k} ← 1

2‖m̂i+1,k − ∆ti
2 Ξ(ti+1, m̂i+1,k)− m̂i,j + ∆ti

2 Ξ(ti, m̂i,j)‖2
Tt ← Sinkhorn(m̂i, m̂i+1, Ci, λ ·∆ti) ▷ Tt ∈ Π(m̂i, m̂i+1)

end for
m̂← MFL(m̂, T, ρ̂) ▷ m := (m̂1, . . . , m̂t), etc.

end for
Output collection of particles m̂, trajectories Tt−1 ◦ · · · ◦ T1

Latent Trajectory Inference 9 / 35



Table of Contents

1 Introduction

2 Min-Entropy Estimator

3 Reduced Formulation

4 Mean-Field Langevin Dynamics & Exponential Convergence

5 Experimental Results

6 Conclusion

Latent Trajectory Inference 10 / 35



Data-fitting term

Let ∆ti := tT
i+1 − tT

i . Fit function: Fitλ,σ : P(Y)T → R:

Fitλ,σ(QtT
1
, . . . , QtT

T
) := 1

λ

T∑
i=1

∆tiDFσ(g♯RtT
i
, ρ̂T,h

i ),

DFσ(g♯RtT
i
, ρ̂T,h

i ) :=
∫

Y
− log

[∫
X

exp
(
−‖g(x)− y‖2

2σ2

)
dRtT

i
(x)
]

dρ̂T,h
i (y)

Negative log-likelihood under the noisy observation model
ŶT

i,j = g(XT
i,j) + σZi,j, where ŶT

i,j is the observation and Zi,j
i.i.d.∼ N (0, I).

DFσ is jointly convex in (RtT
i
, ρ̂T,h

i ) and linear in ρ̂T,h
i .

Chizat et al., 2022
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Min-entropy estimator

Functional F : P(Ω)→ R

F(R) := Fitλ,σ(QtT
1
, . . . , QtT

T
) + τH(R|WΞ,τ ), RT,λ,h := arg min F(R)

WΞ,τ ∈ P(Ω) is the law of the SDE dZt = −Ξ(t, Zt) dt +
√

τ dBt at
uniform initialization

H(µ|ν) =
∫

log(dµ/dν) dµ is relative entropy

Fit term on previous slide

Theorem (Consistency, Lavenant et al., 2021, Thm. 2.3)
If {tT

i }i∈[T] becomes dense in [0, 1] as T→∞,

lim
λ,h→0

lim
T→∞

RT,λ,h = P

weakly, almost surely.
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High level ideas for proof of consistency

lim
λ,h→0

lim
T→∞

RT,λ,h = P

Tools: stochastic calculus, Γ-convergence, analysis, heat flow on manifolds

1 Stochastic arguments
P follows the SDE dXt = −Ξ(t, Xt)dt−∇Ψ(t, Xt)dt +

√
τdBt and

WΞ,τ follows the SDE dZt = −Ξ(t, Zt)dt +
√

τdBt

Drift term in Zt cancels out drift term of Xt, e.g. check via Girsanov
2 Take T→∞

Sequence of discrete minimizers converges to continuous minimizer

Contraction for minimization problem under heat flow (path-space
counterpart for contraction of entropy under heat flow)

3 Take λ, h→ 0
Use same contraction results and Fatou’s lemma
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Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space P(X )T to use the mean-field
Langevin (MFL) dynamics

Let τi := ∆ti · τ and consider the entropic OT problem:

Tτi,Ξ(µ, ν) := min
γ∈Π(µ,ν)

∫
cΞ

τi(x, y) dγ(x, y) + τiH(γ|µ⊗ ν)

= min
γ∈Π(µ,ν)

τiH(γ|pΞ
τiµ⊗ ν)

set of transport plans Π(µ, ν)

cost function cΞ
τi(x, y) := −∆ti log(pΞ

τi(x, y))

pΞ
t transition probability density of WΞ over [0, t]

Chizat et al., 2022
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Representer theorem

Optimization over P(Ω):

F(R) := Fitλ,σ(QtT
1
, . . . , QtT

T
) + τH(R|WΞ,τ )

Reduced optimization over P(X )T:

F(µ) := Fitλ,σ(g♯µ) +
T−1∑
i=1

1
∆ti

Tτi,Ξ(µ(i), µ(i+1))︸ ︷︷ ︸
G(µ)

+τ
T∑

i=1
H(µ(i))︸ ︷︷ ︸
H(µ)

.

Theorem (Chizat et al., 2022)
A minimizer for F can be built from a minimizer for F.

Composition of optimal transport plans:

Rti,...,tT(dx1, . . . , dxT) = γ1,2(dx1, dx2)γ2,3(dx3|x2) · · · γT−1,T(dxT|xT−1)
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Outline of algorithm (review)

Algorithm Framework for latent trajectory inference
Require: (ρ̂1, . . . , ρ̂t), Ξ, N, m, λ

1: Initialize m particles for each t: (m̂1, . . . , m̂t) ∈ Xm×t

2: for N iterations do
3: for i ∈ [t− 1] do
4: {Cj,k} ← 1

2‖m̂i+1,k − ∆ti
2 Ξ(ti+1, m̂i+1,k)− m̂i,j + ∆ti

2 Ξ(ti, m̂i,j)‖2
5: Tt ← Sinkhorn(m̂i, m̂i+1, Ci, λ ·∆ti)
6: end for
7: m̂← MFL(m̂, T, ρ̂)
8: end for
9: Output collection of particles m̂, trajectories Tt−1 ◦ · · · ◦ T1

Composition of optimal transport plans:

Rti,...,tT(dx1, . . . , dxT) = γ1,2(dx1, dx2)γ2,3(dx3|x2) · · · γT−1,T(dxT|xT−1)
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Approximation of the entropic OT problem

We still cannot solve F! Why?

pΞ
t is generally not well-defined

Idea: approximate Tτi,Ξ(µ, ν) using an Euler-Maruyama discretization

Let t1 < t2, ∆t = t2 − t1, µt2 follows dZt = −Ξ(t, Zt)dt +
√

τdBt from µt1 .
Define

Ξ∆t
♯ µt1 := µt1 − Ξ(t1, µt1) ·∆t

Consider:
min

γ∈Π(µ,ν)
τiH(γ|pτi(Ξ∆t

♯ µ⊗ ν))

pt(x, y) is transition density of Brownian motion

Compare to:

Tτi,Ξ(µ, ν) = min
γ∈Π(µ,ν)

τiH(γ|pΞ
τi(µ⊗ ν))
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Approximation of the entropic OT problem (cont.)

Theoretical justification:

Proposition
Assume X is a bounded domain, e.g. diamX < +∞. Let ∆t := t2 − t1
and τi := τ∆t. Define ξ∆t(x) := x− Ξ(t1, x) ·∆t. We have

lim
∆t→0

∫
X ×X

| log(pΞ
τi(x, y))− log(pτi(ξ∆t(x), y))| dx dy = 0.

Proof idea: use triangle inequality, Taylor approximation, dominated
convergence, and fact that transition kernel is Dirac delta in the limit.

No rate of convergence
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Discussion of approximation

Computationally, consider: Tτi(Ξ
∆t/2
♯ µt1 , Ξ−∆t/2

♯ µt2).

Varadhan’s approximation:

c̃Ξ
τi(x, y) ≈ 1

2

∥∥∥∥y− ∆t
2 Ξ(t2, y)− x + ∆t

2 Ξ(t1, x)
∥∥∥∥2

,

which holds for τi small

Consistency result: justifies using Ξ in entropic OT problem

Intuition for robustness: E[|Ξ∆t/2
♯ µt1 − Ξ−∆t/2

♯ µt2)|] ≈ 0 even if the
particles move a large distance
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Outline of algorithm (review)
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1: Initialize m particles for each t: (m̂1, . . . , m̂t) ∈ Xm×t

2: for N iterations do
3: for i ∈ [t− 1] do
4: {Cj,k} ← 1

2‖m̂i+1,k − ∆ti
2 Ξ(ti+1, m̂i+1,k)− m̂i,j + ∆ti

2 Ξ(ti, m̂i,j)‖2
5: Tt ← Sinkhorn(m̂i, m̂i+1, Ci, λ ·∆ti)
6: end for
7: m̂← MFL(m̂, T, ρ̂)
8: end for
9: Output collection of particles m̂, trajectories Tt−1 ◦ · · · ◦ T1
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Mean-field Langevin dynamics

For convex G : P(X )→ R≥0, MFL dynamics solves the following
optimization problem:

min
µ∈P2(X )

Fτ (µ) := G(µ) + H(µ)

Solve by discretizing: noisy particle gradient descent

Let V[µ] := δG
δµ (µ) ∈ C1(X ) be the first variation of G:

lim
ϵ→0+

1
ϵ

[G((1− ϵ)µ + ϵ))− G(µ)] =
∫

X
V[µ](x) d(ν − µ)(x)

for all µ, ν.

Chizat et al., 2022
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Noisy particle gradient descent

Optimization by running noisy particle gradient descent on
Gm : (Xm)T → R defined as Gm(X̂) := G(µ̂X̂), where

µ̂
(i)
X̂ = 1

m

m∑
j=1

δX̂(i)
j

.

Optimization procedure is:X̂(i)
j [k + 1] = X̂(i)

j [k]− η∇V(i)[µ̂[k]](X̂(i)
j [k]) +

√
2η(τ + ϵ)Z(i)

j,k,

µ̂(i)[k] = 1
m
∑m

j=1 δX̂(i)
j [k] i ∈ [T],

X̂(i)
j [0] i.i.d.∼ µ

(i)
0 , η > 0 is a step-size, Z(i)

j,k are i.i.d. standard Gaussian
variables

Taking m→∞ yields the mean-field Langevin dynamics

Chizat et al., 2022
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Exponential convergence

Theorem (Chizat, 2022)
Let µ0 ∈ P(X )T be such that F(µ0) <∞. Then for ϵ ≥ 0, there exists a
unique solution (µs)s≥0 to the MFL dynamics. For ϵ > 0, X the d-torus,
and moreover assuming that µ0 has a bounded absolute log-density, it
holds

Fϵ(µs)−min Fϵ ≤ e−Cs(Fϵ(µ0)−min Fϵ),

where C = βe−α/ϵ for some α, β > 0 independently of µ and ϵ.

Taking ϵs decaying slowly enough, µs converges weakly to the minimizer
µ∗.

Chizat et al., 2022; Chizat, 2022
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Sketch of proof of exponential convergence

Chizat, 2022 is workhorse: 3 assumptions to check

Smoothness of G: first-variation V is Lipschitz continuous

Convexity of F0 and existence of minimizer for Fϵ

uniform log-Sobolev inequality: ∃ρτ > 0 s.t. ∀µ ∈ P2(Rd), we have
ν ∝ e−V[µ]/τ ∈ L1(Rd) s.t.

H(µ|ν) ≤ 1
2ρ

I(µ|ν)

In our setting: still true
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Velocity model: robustness

Initial condition is at the origin

x velocity: 5, y velocity: 7

MFL fails to converge
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Velocity model: exponential convergence
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Circular motion model: recovered position
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Circular motion model: recovered velocity

Latent Trajectory Inference 31 / 35



Table of Contents

1 Introduction

2 Min-Entropy Estimator

3 Reduced Formulation

4 Mean-Field Langevin Dynamics & Exponential Convergence

5 Experimental Results

6 Conclusion

Latent Trajectory Inference 32 / 35



Future work

Conjecture
For every t1 < t2, with ∆t := t2 − t1 sufficiently small, we have

|Tτi,Ξ(µt1 , µt2)− Tτi(Ξ∆t
♯ µt1 , µt2)| = O(∆t),

|H(γΞ|WΞ,τ
t1,t2)− H(γ|Wτ

t1,t2)| = O(∆t),

where γΞ and γ are the corresponding optimal transport plan to
Tτi,Ξ(µt1 , µt2) and Tτi(Ξ∆t

♯ µt1 , µt2), respectively.

Statistical properties of the estimator

Relaxed assumptions on g, Ξ

Empirical validation of predicting outcomes of individuals
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Conclusion

Trajectory inference without observing whole particles

Entropy minimization using reference measure with drift

Approximation to obtain well-posed entropic OT problem

Experimental validation

Questions?
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