Latent Trajectory Inference with Drift Prior

Anming Gu Supervised by: Ed Chien, Kristjan Greenewald In preparation for NeurIPS 2024

May 3rd, 2024

Table of Contents

1 [Introduction](#page-1-0)

- **[Min-Entropy Estimator](#page-15-0)**
- **[Reduced Formulation](#page-24-0)**
- [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)
- **[Experimental Results](#page-44-0)**

[Conclusion](#page-49-0)

Motivation: computational biology applications

Goal: understand biological processes

Issue: we cannot observe full cell development process

Data consists of population snapshots at different time points

Figure from Schiebinger et al., 2019

What is trajectory inference?

Let *X* be the ambient space and $\Omega = C([0,1]: X)$ be the path space Goal: estimate the ground truth stochastic process $P \in \mathcal{P}(\Omega)$

Figure from Lavenant et al., 2021

Mathematical model of trajectory inference

Let $X_t \in \mathcal{X}$ be an unobserved state vector evolving according to the following SDE for $t \in [0, 1]$:

$$
dX_t = -\Xi(t, X_t)dt - \nabla\Psi(t, X_t)dt + \sqrt{\tau}dB_t
$$
\n(1)

- initial condition *X*⁰ *∼ µ*⁰
- **•** divergence-free velocity prior $\Xi \in C([0,1] \times \mathcal{X} : \mathcal{X})$ is *known*
- $\mathsf{potential}\;\Psi\in\mathcal{C}^2([0,1]\times\mathcal{X})\;\mathsf{is}\;unknown$
- *τ >* 0 is the variance, *{Bt}* is a standard Brownian motion

Mathematical model of trajectory inference

Let $X_t \in \mathcal{X}$ be an unobserved state vector evolving according to the following SDE for $t \in [0, 1]$:

$$
dX_t = -\Xi(t, X_t)dt - \nabla\Psi(t, X_t)dt + \sqrt{\tau}dB_t
$$
\n(1)

- initial condition *X*⁰ *∼ µ*⁰
- **•** divergence-free velocity prior $\Xi \in C([0,1] \times \mathcal{X} : \mathcal{X})$ is *known*
- $\mathsf{potential}\;\Psi\in\mathcal{C}^2([0,1]\times\mathcal{X})\;\mathsf{is}\;unknown$
- *τ >* 0 is the variance, *{Bt}* is a standard Brownian motion

This is our ground truth $P \in \mathcal{P}(\Omega)$

Smooth function $g: \mathcal{X} \rightarrow \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

 $Y_t = g(X_t)$

Smooth function $g: \mathcal{X} \rightarrow \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

 $Y_t = g(X_t)$

T observation times with $0 \le t_1^T < \cdots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of Y_{t_i} :

$$
\{Y_{i,j}^{\mathcal{T}}\}_{j=1}^{N_i^{\mathcal{T}}}\overset{\text{i.i.d.}}{\sim} \mathcal{g}_\sharp \mathbf{P}_{t_i^{\mathcal{T}}}:=\mathbf{Q}_{t_i^{\mathcal{T}}}.
$$

Smooth function $g: \mathcal{X} \rightarrow \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

 $Y_t = g(X_t)$

T observation times with $0 \le t_1^T < \cdots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of Y_{t_i} :

$$
\{Y_{i,j}^{\mathcal{T}}\}_{j=1}^{N_i^{\mathcal{T}}}\overset{\text{i.i.d.}}{\sim} \mathcal{g}_\sharp \mathbf{P}_{t_i^{\mathcal{T}}}:=\mathbf{Q}_{t_i^{\mathcal{T}}}.
$$

Smooth empirical distribution by *h*-wide heat kernel Φ*h*:

$$
\hat{\rho}_i^T = \Phi_h \left(\frac{1}{N_i^T} \sum_{i=1}^{N_i^T} \delta_{Y_{i,j}^T} \right)
$$

Smooth function $g: \mathcal{X} \rightarrow \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

$$
Y_t = g(X_t)
$$

T observation times with $0 \le t_1^T < \cdots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of Y_{t_i} :

$$
\{Y_{i,j}^{\mathcal T}\}_{j=1}^{N_i^{\mathcal T}}\stackrel{\text{i.i.d.}}{\sim} g_\sharp \mathbf P_{t_i^{\mathcal T}}:=\mathbf Q_{t_i^{\mathcal T}}.
$$

Smooth empirical distribution by *h*-wide heat kernel Φ*h*:

$$
\hat{\rho}_i^T = \Phi_h \left(\frac{1}{N_i^T} \sum_{i=1}^{N_i^T} \delta_{Y_{i,j}^T} \right)
$$

Goal: recover \textbf{P} from $(\hat{\rho}_1^{\mathcal{T}}, \ldots, \hat{\rho}_{\mathcal{T}}^{\mathcal{T}})$ and the known velocity field Ξ

V is unknown, but restricted to a class C_{W} .

 (g, Ξ, C_{Ψ}) is C_{Ψ} -marginal-observable if, given g, Ξ, σ , and all marginals $\mathbf{Q}_t = g_t \mathbf{P}_t$ of Y_t for all $t \in [0, 1]$, the marginals \mathbf{P}_t of X_t are uniquely determined for all $t \in [0, 1]$

With this assumption, we can infer the latent dynamics solely from the marginals **Q***^t*

V is unknown, but restricted to a class C_{W} .

 (g, Ξ, C_{Ψ}) is C_{Ψ} -marginal-observable if, given g, Ξ, σ , and all marginals $\mathbf{Q}_t = g_t \mathbf{P}_t$ of Y_t for all $t \in [0, 1]$, the marginals \mathbf{P}_t of X_t are uniquely determined for all $t \in [0, 1]$

With this assumption, we can infer the latent dynamics solely from the marginals **Q***^t*

Setting for synthetic experiments:

- $\bullet \equiv$ is linear, time-invariant and Ψ is time-invariant
- *• <i>g* is of the form (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) for some *k* < *n*
- "classical observability" holds

Why is our setting important?

Goal: recover P from $(\hat{\rho}_1^{\mathcal{T}}, \ldots, \hat{\rho}_{\mathcal{T}}^{\mathcal{T}})$ and the known velocity field Ξ Our contributions:

- Trajectory inference without observing whole particles
- Formulate as entropy minimization problem with respect to reference measure with drift

Why is our setting important?

Goal: recover P from $(\hat{\rho}_1^{\mathcal{T}}, \ldots, \hat{\rho}_{\mathcal{T}}^{\mathcal{T}})$ and the known velocity field Ξ Our contributions:

- Trajectory inference without observing whole particles
- Formulate as entropy minimization problem with respect to reference measure with drift

Applications:

- More robust optimization using drift prior
- Smoother trajectories and more accurate prediction of final particle positions
- Privacy: don't need to release full data
- Study diffusion models
- Interpretability: biology datasets are very high dimensional

Algorithm Framework for latent trajectory inference

Require: Collection of observations $(\hat{\rho}_1, \ldots, \hat{\rho}_t)$, velocity prior Ξ , number of iterations for MFL dynamics *N*, number of particles *m*, entropy parameter *λ*

Initialize *m* particles for each *t*: $(\hat{m}_1, \ldots, \hat{m}_t) \in \mathcal{X}^{m \times t}$

for *N* iterations **do**

$$
\begin{array}{ll}\n\textbf{for } i \in [t-1] \textbf{ do} & \triangleright \Delta t_i := t_{i+1} - t_i \\
\{C_{j,k}\} \leftarrow \frac{1}{2} || \hat{m}_{i+1,k} - \frac{\Delta t_i}{2} \Xi(t_{i+1}, \hat{m}_{i+1,k}) - \hat{m}_{i,j} + \frac{\Delta t_i}{2} \Xi(t_i, \hat{m}_{i,j}) ||^2 \\
\hline\n\tau_t \leftarrow \text{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i) & \triangleright \tau_t \in \Pi(\hat{m}_i, \hat{m}_{i+1}) \\
\textbf{end for} \\
\hat{\mathbf{m}} \leftarrow \text{MFL}(\hat{\mathbf{m}}, \mathbf{T}, \hat{\boldsymbol{\rho}}) & \triangleright \mathbf{m} := (\hat{m}_1, \dots, \hat{m}_t), \text{ etc.} \\
\textbf{end for} \\
\hat{\mathbf{a}} \leftarrow \text{MFL}(\hat{\mathbf{m}}, \mathbf{T}, \hat{\boldsymbol{\rho}}) & \triangleright \mathbf{m} := (\hat{m}_1, \dots, \hat{m}_t), \text{ etc.} \\
\end{array}
$$

Output collection of particles **m**ˆ , trajectories *Tt−*¹ *◦ · · · ◦ T*¹

Table of Contents

[Introduction](#page-1-0)

- 2 [Min-Entropy Estimator](#page-15-0)
	- **[Reduced Formulation](#page-24-0)**
- [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)
- **[Experimental Results](#page-44-0)**
- **[Conclusion](#page-49-0)**

Data-fitting term

Let $\Delta t_i := t_{i+1}^T - t_i^T$. Fit function: $\mathrm{Fit}^{\lambda,\sigma} : \mathcal{P}(\mathcal{Y})^T \to \mathbb{R}$:

$$
\text{Fit}^{\lambda,\sigma}(\mathbf{Q}_{t_1^{\mathcal{T}}},\ldots,\mathbf{Q}_{t_{\mathcal{T}}^{\mathcal{T}}}) := \frac{1}{\lambda}\sum_{i=1}^{\mathcal{T}}\Delta t_i\text{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_i^{\mathcal{T}}},\hat{\rho}_i^{\mathcal{T},h}),
$$

$$
\mathrm{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_i^T},\hat{\rho}_i^{T,h}) := \int_{\mathcal{Y}} -\log\left[\int_{\mathcal{X}} \exp\left(-\frac{\|g(x)-y\|^2}{2\sigma^2}\right) d\mathbf{R}_{t_i^T}(x)\right] d\hat{\rho}_i^{T,h}(y)
$$

Data-fitting term

Let $\Delta t_i := t_{i+1}^T - t_i^T$. Fit function: $\mathrm{Fit}^{\lambda,\sigma} : \mathcal{P}(\mathcal{Y})^T \to \mathbb{R}$:

$$
\text{Fit}^{\lambda,\sigma}(\textbf{Q}_{t_1^{\mathcal{T}}},\ldots,\textbf{Q}_{t_{\mathcal{T}}^{\mathcal{T}}}) := \frac{1}{\lambda}\sum_{i=1}^{\mathcal{T}}\Delta t_i\text{DF}^{\sigma}(g_{\sharp}\textbf{R}_{t_i^{\mathcal{T}}},\hat{\rho}_i^{\mathcal{T},h}),
$$

$$
\mathrm{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_i^T},\hat{\rho}_i^{T,h}) := \int_{\mathcal{Y}} -\log\left[\int_{\mathcal{X}} \exp\left(-\frac{\|g(x)-y\|^2}{2\sigma^2}\right) d\mathbf{R}_{t_i^T}(x)\right] d\hat{\rho}_i^{T,h}(y)
$$

- Negative log-likelihood under the noisy observation model $\hat{Y}_{i,j}^T=g(X_{i,j}^T)+\sigma Z_{i,j}$, where $\hat{Y}_{i,j}^T$ is the observation and $Z_{i,j}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,I).$
- DF^{σ} is jointly convex in $(\mathbf{R}_{t_i^{\mathcal{T}}}, \hat{\rho}_i^{\mathcal{T},h})$ $\hat{p}^{T,h}_i$) and linear in $\hat{p}^{T,h}_i$ *i* .

Chizat et al., 2022

Functional $\mathcal{F} : \mathcal{P}(\Omega) \to \mathbb{R}$ $\mathcal{F}(\textbf{R}) := \mathrm{Fit}^{\lambda,\sigma} (\textbf{Q}_{t_1^T}, \dots, \textbf{Q}_{t_T^T}) + \tau H(\textbf{R}|\textbf{W}^{\Xi,\tau}), \quad \textbf{R}^{T,\lambda,h} := \text{arg min} \; \mathcal{F}(\textbf{R})$

- $\mathbf{W}^{\Xi,\tau} \in \mathcal{P}(\Omega)$ is the law of the SDE $dZ_t = -\Xi(t,Z_t)\,dt + \sqrt{\tau}\,dB_t$ at uniform initialization
- $H\! (\mu|\nu) = \int \log (d\mu/d\nu) \, d\mu$ is relative entropy
- **•** Fit term on previous slide

Functional $\mathcal{F} : \mathcal{P}(\Omega) \to \mathbb{R}$ $\mathcal{F}(\textbf{R}) := \mathrm{Fit}^{\lambda,\sigma} (\textbf{Q}_{t_1^T}, \dots, \textbf{Q}_{t_T^T}) + \tau H(\textbf{R}|\textbf{W}^{\Xi,\tau}), \quad \textbf{R}^{T,\lambda,h} := \text{arg min} \; \mathcal{F}(\textbf{R})$

- $\mathbf{W}^{\Xi,\tau} \in \mathcal{P}(\Omega)$ is the law of the SDE $dZ_t = -\Xi(t,Z_t)\,dt + \sqrt{\tau}\,dB_t$ at uniform initialization
- $H\! (\mu|\nu) = \int \log (d\mu/d\nu) \, d\mu$ is relative entropy
- **•** Fit term on previous slide

Theorem (Consistency, Lavenant et al., 2021, Thm. 2.3)

If $\{t_i^{\mathcal{T}}\}_{i\in\mathcal{[} \mathcal{T}\mathcal{]}}$ *becomes dense in* $[0,1]$ *as* $\mathcal{T}\to\infty$ *,*

$$
\lim_{\lambda, h \to 0} \lim_{T \to \infty} \mathbf{R}^{T, \lambda, h} = \mathbf{P}
$$

weakly, almost surely.

High level ideas for proof of consistency

 $\lim_{n \to \infty} \lim_{n \to \infty} \mathbf{R}^{T,\lambda,h} = \mathbf{P}$ *λ,h→*0 *T→∞*

High level ideas for proof of consistency

 $\lim_{n \to \infty} \lim_{n \to \infty} \mathbf{R}^{T,\lambda,h} = \mathbf{P}$ *λ,h→*0 *T→∞*

- **1** Stochastic arguments
	- **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and **W**^{$\bar{=}$, *τ*} follows the SDE $dZ_t = -\bar{=}$ (*t*, Z_t) $dt + \sqrt{\tau}dB_t$
	- Drift term in *Z^t* cancels out drift term of *X^t* , e.g. check via Girsanov

 $\lim_{n \to \infty} \lim_{n \to \infty} \mathbf{R}^{T,\lambda,h} = \mathbf{P}$ *λ,h→*0 *T→∞*

- **1** Stochastic arguments
	- **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and **W**^{$\bar{=}$, *τ*} follows the SDE $dZ_t = -\bar{=}$ (*t*, Z_t) $dt + \sqrt{\tau}dB_t$
	- Drift term in *Z^t* cancels out drift term of *X^t* , e.g. check via Girsanov
- ² Take *T → ∞*
	- Sequence of discrete minimizers converges to continuous minimizer
	- Contraction for minimization problem under heat flow (path-space counterpart for contraction of entropy under heat flow)

High level ideas for proof of consistency

 $\lim_{n \to \infty} \lim_{n \to \infty} \mathbf{R}^{T,\lambda,h} = \mathbf{P}$ *λ,h→*0 *T→∞*

- **1** Stochastic arguments
	- **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and **W**^{$\bar{=}$, *τ*} follows the SDE $dZ_t = -\bar{=}$ (*t*, Z_t) $dt + \sqrt{\tau}dB_t$
	- Drift term in *Z^t* cancels out drift term of *X^t* , e.g. check via Girsanov
- ² Take *T → ∞*
	- Sequence of discrete minimizers converges to continuous minimizer
	- Contraction for minimization problem under heat flow (path-space counterpart for contraction of entropy under heat flow)
- ³ Take *λ, h →* 0
	- Use same contraction results and Fatou's lemma

Table of Contents

[Introduction](#page-1-0)

- **[Min-Entropy Estimator](#page-15-0)**
- 3 [Reduced Formulation](#page-24-0)
- [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)
- **[Experimental Results](#page-44-0)**

[Conclusion](#page-49-0)

Our entropic optimal transport problem

 F is infinite-dimensional optimization problem: curse of dimensionality Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X})^{\mathcal{T}}$ to use the mean-field Langevin (MFL) dynamics

Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X})^{\mathcal{T}}$ to use the mean-field Langevin (MFL) dynamics

Let $\tau_i := \Delta t_i \cdot \tau$ and consider the entropic OT problem:

$$
T_{\tau_i,\Xi}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c_{\tau_i}^{\Xi}(x,y) d\gamma(x,y) + \tau_i H(\gamma|\mu \otimes \nu)
$$

=
$$
\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma|p_{\tau_i}^{\Xi}\mu \otimes \nu)
$$

Our entropic optimal transport problem

F is infinite-dimensional optimization problem: curse of dimensionality

Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X})^{\mathcal{T}}$ to use the mean-field Langevin (MFL) dynamics

Let $\tau_i := \Delta t_i \cdot \tau$ and consider the entropic OT problem:

$$
T_{\tau_i,\Xi}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c_{\tau_i}^{\Xi}(x,y) d\gamma(x,y) + \tau_i H(\gamma|\mu \otimes \nu)
$$

=
$$
\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma|p_{\tau_i}^{\Xi}\mu \otimes \nu)
$$

• set of transport plans $Π(μ, ν)$

• cost function
$$
c_{\tau_i}^{\equiv}(x, y) := -\Delta t_i \log(p_{\tau_i}^{\equiv}(x, y))
$$

p Ξ *t* transition probability density of **W**^Ξ over [0*,t*] Chizat et al., 2022

Representer theorem

Optimization over *P*(Ω):

$$
\mathcal{F}(\bm{\mathsf{R}}) := \mathrm{Fit}^{\lambda, \sigma} (\bm{\mathsf{Q}}_{t_1^{\mathcal{T}}}, \ldots, \bm{\mathsf{Q}}_{t_{\mathcal{T}}^{\mathcal{T}}}) + \tau \mathit{H}(\bm{\mathsf{R}} | \bm{\mathsf{W}}^{\Xi, \tau})
$$

Reduced optimization over $\mathcal{P}(\mathcal{X})^{\mathcal{T}}$:

Representer theorem

Optimization over *P*(Ω):

$$
\mathcal{F}(\bm{\mathsf{R}}) := \mathrm{Fit}^{\lambda,\sigma} (\bm{\mathsf{Q}}_{t_1^{\mathcal{T}}}, \ldots, \bm{\mathsf{Q}}_{t_{\mathcal{T}}^{\mathcal{T}}}) + \tau \mathit{H}(\bm{\mathsf{R}} | \bm{\mathsf{W}}^{\Xi, \tau})
$$

Reduced optimization over $\mathcal{P}(\mathcal{X})^{\mathcal{T}}$:

$$
\mathcal{F}(\boldsymbol{\mu}):=\textup{Fit}^{\lambda,\sigma}(g_{\sharp}\boldsymbol{\mu})+\sum_{i=1}^{T-1}\frac{1}{\Delta t_{i}}\mathcal{T}_{\tau_{i},\Xi}(\boldsymbol{\mu}^{(i)},\boldsymbol{\mu}^{(i+1)})+\tau\sum_{i=1}^{T}\mathcal{H}(\boldsymbol{\mu}^{(i)})\,.
$$

Theorem (Chizat et al., 2022)

A minimizer for F can be built from a minimizer for F.

Composition of optimal transport plans:

$$
\mathbf{R}_{t_i,...,t_T}(dx_1,...,dx_T) = \gamma_{1,2}(dx_1,dx_2)\gamma_{2,3}(dx_3|x_2)\cdots\gamma_{T-1,T}(dx_T|x_{T-1})
$$

Algorithm Framework for latent trajectory inference

Required:
$$
(\hat{\rho}_1, \ldots, \hat{\rho}_t)
$$
, Ξ , N , m , λ

- 1: Initialize *m* particles for each *t*: $(\hat{m}_1, \ldots, \hat{m}_t) \in \mathcal{X}^{m \times t}$
- 2: **for** *N* iterations **do**

3: for
$$
i \in [t-1]
$$
 do

4:
$$
\{C_{j,k}\} \leftarrow \frac{1}{2} \|\hat{m}_{i+1,k} - \frac{\Delta t_i}{2} \Xi(t_{i+1}, \hat{m}_{i+1,k}) - \hat{m}_{i,j} + \frac{\Delta t_i}{2} \Xi(t_i, \hat{m}_{i,j})\|^2
$$

5:
$$
\mathcal{T}_t \leftarrow \text{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i)
$$

6: **end for**

$$
\textbf{7:} \qquad \hat{\textbf{m}} \leftarrow \text{MFL}(\hat{\textbf{m}}, \textbf{T}, \hat{\boldsymbol{\rho}})
$$

8: **end for**

9: Output collection of particles $\hat{\mathbf{m}}$, trajectories $T_{t-1} \circ \cdots \circ T_1$

Composition of optimal transport plans:

$$
\mathbf{R}_{t_i,...,t_T}(dx_1,...,dx_T) = \gamma_{1,2}(dx_1,dx_2)\gamma_{2,3}(dx_3|x_2)\cdots\gamma_{T-1,T}(dx_T|x_{T-1})
$$

We still cannot solve *F*! Why?

 p^{Ξ}_{t} is generally not well-defined

ldea: approximate $\mathcal{T}_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

We still cannot solve *F*! Why?

 p^{Ξ}_{t} is generally not well-defined

ldea: approximate $\mathcal{T}_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$
\Xi^{\Delta t}_\sharp \mu_{t_1} := \mu_{t_1} - \Xi(t_1, \mu_{t_1}) \cdot \Delta t
$$

We still cannot solve *F*! Why?

 p^{Ξ}_{t} is generally not well-defined

ldea: approximate $\mathcal{T}_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$
\Xi^{\Delta t}_\sharp \mu_{t_1} := \mu_{t_1} - \Xi(t_1, \mu_{t_1}) \cdot \Delta t
$$

Consider:

$$
\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma | \rho_{\tau_i} (\Xi^{\Delta t}_\sharp \mu \otimes \nu))
$$

 $p_t(x, y)$ is transition density of Brownian motion

We still cannot solve *F*! Why?

 p^{Ξ}_{t} is generally not well-defined

ldea: approximate $\mathcal{T}_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$
\Xi^{\Delta t}_{\sharp}\mu_{t_1}:=\mu_{t_1}-\Xi(t_1,\mu_{t_1})\cdot\Delta t
$$

Consider:

$$
\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma | \rho_{\tau_i} (\Xi^{\Delta t}_\sharp \mu \otimes \nu))
$$

 $p_t(x, y)$ is transition density of Brownian motion Compare to:

$$
T_{\tau_i,\Xi}(\mu,\nu)=\min_{\gamma\in\Pi(\mu,\nu)}\tau_iH(\gamma|\rho_{\tau_i}^{\Xi}(\mu\otimes\nu))
$$

Theoretical justification:

Proposition

Assume \mathcal{X} *is a bounded domain, e.g.* diam $\mathcal{X} < +\infty$ *. Let* $\Delta t := t_2 - t_1$ \mathcal{L} *and* $\tau_i := \tau \Delta t$. Define $\xi^{\Delta t}(x) := x - \Xi(t_1,x) \cdot \Delta t$. We have

$$
\lim_{\Delta t \to 0} \int_{\mathcal{X} \times \mathcal{X}} |\log(p_{\tau_i}^{\equiv}(x, y)) - \log(p_{\tau_i}(\xi^{\Delta t}(x), y))| \, dx \, dy = 0.
$$

Proof idea: use triangle inequality, Taylor approximation, dominated convergence, and fact that transition kernel is Dirac delta in the limit.

No rate of convergence

Discussion of approximation

- Computationally, consider: $T_{\tau_i} (\Xi^{\Delta t/2}_{\sharp} \mu_{t_1}, \Xi^{-\Delta t/2}_{\sharp} \mu_{t_2}).$
- Varadhan's approximation:

$$
\widetilde{c}_{\tau_i}^{\equiv}(x,y) \approx \frac{1}{2} \left\| y - \frac{\Delta t}{2} \Xi(t_2,y) - x + \frac{\Delta t}{2} \Xi(t_1,x) \right\|^2,
$$

which holds for *τⁱ* small

- Consistency result: justifies using Ξ in entropic OT problem
- ${\rm Int}$ uition for robustness: $\mathbb{E}[|\Xi^{\Delta t/2}_{\sharp}|]$ $\frac{\Delta t/2}{\sharp}\mu_{t_1}-\Xi_{\sharp}^{-\Delta t/2}\mu_{t_2})|]\approx 0$ even if the particles move a large distance

Algorithm Framework for latent trajectory inference

Required:
$$
(\hat{\rho}_1, \ldots, \hat{\rho}_t)
$$
, Ξ , N , m , λ

- 1: Initialize *m* particles for each *t*: $(\hat{m}_1, \ldots, \hat{m}_t) \in \mathcal{X}^{m \times t}$
- 2: **for** *N* iterations **do**
- 3: **for** *i ∈* [*t −* 1] **do**
- 4: $\{C_{j,k}\}\leftarrow \frac{1}{2}\|\hat{m}_{i+1,k}-\frac{\Delta t_i}{2}\Xi(t_{i+1},\hat{m}_{i+1,k})-\hat{m}_{i,j}+\frac{\Delta t_i}{2}\Xi(t_i,\hat{m}_{i,j})\|^2$
- 5: $\tau_t \leftarrow \text{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i)$
- 6: **end for**
- 7: $\hat{\mathbf{m}} \leftarrow \text{MFL}(\hat{\mathbf{m}}, \mathbf{T}, \hat{\boldsymbol{\rho}})$
- 8: **end for**
- 9: Output collection of particles $\hat{\mathbf{m}}$, trajectories $T_{t-1} \circ \cdots \circ T_1$

Table of Contents

[Introduction](#page-1-0)

- **[Min-Entropy Estimator](#page-15-0)**
- **[Reduced Formulation](#page-24-0)**
- 4 [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)
- **[Experimental Results](#page-44-0)**

[Conclusion](#page-49-0)

Mean-field Langevin dynamics

For convex $G: \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$, MFL dynamics solves the following optimization problem:

$$
\min_{\mu \in \mathcal{P}_2(\mathcal{X})} F_{\tau}(\mu) := G(\mu) + H(\mu)
$$

Solve by discretizing: noisy particle gradient descent

Mean-field Langevin dynamics

For convex $G: \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$, MFL dynamics solves the following optimization problem:

$$
\min_{\mu \in \mathcal{P}_2(\mathcal{X})} F_{\tau}(\mu) := G(\mu) + H(\mu)
$$

Solve by discretizing: noisy particle gradient descent

Let
$$
V[\mu] := \frac{\delta G}{\delta \mu}(\mu) \in C^1(\mathcal{X})
$$
 be the first variation of G:
\n
$$
\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} [G((1 - \epsilon)\mu + \epsilon)) - G(\mu)] = \int_{\mathcal{X}} V[\mu](x) d(\nu - \mu)(x)
$$

for all μ, ν .

Chizat et al., 2022

Noisy particle gradient descent

Optimization by running noisy particle gradient descent on $\mathcal{G}_m : (\mathcal{X}^m)^{\mathcal{T}} \to \mathbb{R}$ defined as $\mathcal{G}_m(\hat{X}) := \mathcal{G}(\hat{\mu}_{\hat{X}})$, where

$$
\hat{\boldsymbol{\mu}}_{\hat{\boldsymbol{\chi}}}^{(i)} = \frac{1}{m} \sum_{j=1}^m \delta_{\hat{\boldsymbol{\chi}}_j^{(i)}}.
$$

Optimization procedure is:

$$
\begin{cases} \hat{X}_{j}^{(i)}[k+1] = \hat{X}_{j}^{(i)}[k] - \eta \nabla V^{(i)}[\hat{\mu}[k]](\hat{X}_{j}^{(i)}[k]) + \sqrt{2\eta(\tau + \epsilon)}Z_{j,k}^{(i)}, \\ \hat{\mu}^{(i)}[k] = \frac{1}{m} \sum_{j=1}^{m} \delta_{\hat{X}_{j}^{(i)}[k]} \quad i \in [T], \end{cases}
$$

 $\hat{\pmb{\chi}}_i^{(i)}$ *j* [0] *ⁱ.i.d. ∼ µ* (*i*) $_{0}^{(i)}$, $\eta >0$ is a step-size, $\mathcal{Z}_{j,k}^{(i)}$ *j,k* are i.i.d. standard Gaussian variables

Taking $m \to \infty$ yields the mean-field Langevin dynamics

Chizat et al., 2022

Theorem (Chizat, 2022)

 L et $\boldsymbol{\mu}_0 \in \mathcal{P}(\mathcal{X})^{\mathsf{T}}$ be such that $\mathsf{F}(\boldsymbol{\mu}_0) < \infty$. Then for $\epsilon \geq 0$, there exists a *unique solution* $(\mu_s)_{s\geq 0}$ *to the MFL dynamics. For* $\epsilon > 0$, $\mathcal X$ *the d-torus, and moreover assuming that µ*⁰ *has a bounded absolute log-density, it holds*

$$
F_{\epsilon}(\mu_s) - \min F_{\epsilon} \le e^{-Cs}(F_{\epsilon}(\mu_0) - \min F_{\epsilon}),
$$

where $C = \beta e^{-\alpha/\epsilon}$ *for some* $\alpha, \beta > 0$ *independently of* μ *and* ϵ *.*

Taking $\epsilon_{\mathfrak{s}}$ decaying slowly enough, $\boldsymbol{\mu}_{\mathfrak{s}}$ converges weakly to the minimizer *µ ∗* .

Chizat et al., 2022; Chizat, 2022

Sketch of proof of exponential convergence

Chizat, 2022 is workhorse: 3 assumptions to check

- Smoothness of *G*: first-variation *V* is Lipschitz continuous
- Convexity of *F*⁰ and existence of minimizer for *F^ϵ*
- $\mathsf{uniform}\ \mathsf{log}\textrm{-}\mathsf{Sobolev}\ \mathsf{inequality}\colon\, \exists \rho_{\tau}>0\ \mathsf{s.t.}\ \forall \mu\in \mathcal{P}_2(\mathbb{R}^d),\ \mathsf{we}\ \mathsf{have}\ \mathsf{true}$ $\nu \propto e^{-V[\mu]/\tau} \in L^1(\mathbb{R}^d)$ s.t.

$$
H(\mu|\nu) \leq \frac{1}{2\rho} I(\mu|\nu)
$$

In our setting: still true

Table of Contents

[Introduction](#page-1-0)

- **[Min-Entropy Estimator](#page-15-0)**
- **[Reduced Formulation](#page-24-0)**
- 4 [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)

5 [Experimental Results](#page-44-0)

[Conclusion](#page-49-0)

Velocity model: robustness

Langevin

- \bullet Initial condition is at the origin
- *x* velocity: 5, *y* velocity: 7
- MFL fails to converge

Velocity model: exponential convergence

Circular motion model: recovered position

Langevin

Circular motion model: recovered velocity

Table of Contents

[Introduction](#page-1-0)

- **[Min-Entropy Estimator](#page-15-0)**
- **[Reduced Formulation](#page-24-0)**
- [Mean-Field Langevin Dynamics & Exponential Convergence](#page-38-0)
- **[Experimental Results](#page-44-0)**

Future work

Conjecture

*For every t*₁ $<$ *t*₂*, with* $\Delta t := t_2 - t_1$ *sufficiently small, we have*

$$
|T_{\tau_i,\Xi}(\mu_{t_1},\mu_{t_2})-T_{\tau_i}(\Xi^{\Delta t}_{\sharp}\mu_{t_1},\mu_{t_2})|=O(\Delta t),
$$

$$
|H(\gamma_{\Xi}|\mathbf{W}_{t_1,t_2}^{\Xi,\tau})-H(\gamma|\mathbf{W}_{t_1,t_2}^{\tau})|=O(\Delta t),
$$

where γ^Ξ *and γ are the corresponding optimal transport plan to* $\mathcal{T}_{\tau_i,\Xi}(\mu_{t_1},\mu_{t_2})$ and $\mathcal{T}_{\tau_i}(\Xi^{\Delta t}_\sharp\mu_{t_1},\mu_{t_2})$, respectively.

- **•** Statistical properties of the estimator
- Relaxed assumptions on *g,* Ξ
- Empirical validation of predicting outcomes of individuals

Conclusion

- **•** Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift
- Approximation to obtain well-posed entropic OT problem
- Experimental validation

Conclusion

- **•** Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift
- Approximation to obtain well-posed entropic OT problem
- Experimental validation

Questions?

References

- Schiebinger, Shu, Tabaka, Cleary, et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming, 2019.
- Lavenant, Zhang, Kim, Schiebinger, 2021. Towards a mathematical theory of trajectory inference.
- Chizat, Zhang, Heitz, Schiebinger, 2022. Trajectory inference vi mean-field Langevin in path space.
- Chizat, 2022. Mean Field Langevin Dynamics: Exponential convergence and annealing