
Partially Observed Trajectory Inference using 
Optimal Transport and a Dynamics Prior

Latent Trajectory Inference

Trajectory inference seeks to recover the temporal dynamics of a population 
from snapshots of its (uncoupled) temporal marginals, i.e. where observed 
particles are not tracked over time. Prior works [1, 2] framed the problem 
under a stochastic differential equation (SDE) model in observation space 
and provided a mean-field Langevin algorithm. We extend the guarantees to 
observable state-space models.

Min-entropy estimator: 

         is the divergence-free path measure

Main theorem: 

The optimization on path-space is equivalent to one on particle-space: 

where           are entropic OT costs, due to:

 
     can be optimized via mean-field Langevin dynamics [3].

Theoretical Results

Problem Setup

Unobserved state vector in latent space      follows the SDE 

     is a Brownian motion
   is known diffusivity
                             is a known divergence-free dynamics model
                       is an unknown potential function

The state vector evolves over time             with initial distribution     , which 
yields path law    .

Observation space    : function                   is the observation function

    observation times with                           and       i.i.d. samples: 

Empirical distributions:

Problem: Given                 , recover 

Key assumption is observability: 
Definition: Assume      is unknown but restricted to class     . We say the 
tuple                is      -ensemble observable if, given           and all marginals                                                                                                                                                                                                                                                                                                                                                                                                
x     , the marginals      are uniquely determined for all  

Fit function:

where          is KL divergence and        is negative entropy

Applications (future work)
● Single-cell genomic data analysis - learning the distribution of cellular 

gene expression trajectories. 
● Learning subject trajectory distributions from independent surveys at 

various times without the need to maintain a consistent panel of 
respondents.

● Private synthetic trajectory generation.

A simple constant velocity model. (left) PO-MFL algorithm that takes into 
account the velocity dynamics. (right) Baseline.
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(left) Velocity of one particle at end of optimization. (right) Population 
velocity at start of optimization, showing exponential convergence.

Synthetic Data Results


