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Trajectory inference seeks to recover the temporal dynamics of a population In-entropy estimator. 30 - 30 -
from snapshots of its (uncoupled) temporal marginals, i.e. where observed F(R) P — thAvU(gﬁRtT, o 79ﬁRtT) + TH(R|W:’T) ¢
particles are not tracked over time. Prior works [1, 2] framed the problem _ | ! T 20 - i 20 -
under a stochastic differential equation (SDE) model in observation space W=7 s the divergence-free path measure > s -
and provided a mean-field Langevin algorithm. We extend the guarantees to _ 10 - y 4 10 A |
observable state-space models. Main theorem: - ¥
Suppose P follows the SDE with initial condition Py € P(X) s.t. H(Py|vol) < 0 L o ok
+00. Let RT"M € P(Q) be the unique minimizer of 6‘ = = ﬁOL = =
Problem Setup RTAM o arg min F(R). ; :
_ SR A simple constant velocity model. (left) PO-MFL algorithm that takes into
Unobserved state vector in latent space X" follows the SDE Then, it holds account the velocity dynamics. (right) Baseline.
= B lim ( lim R"") =P. , : .
dXy = —E(t, Xy)dt — VYU (¢, X¢)dt + /TdB, A (Jim, ) One particle Y Velocity Mean Y Velocity
B, is a Brownian motion The optimization on path-space is equivalent to one on particle-space: 10 - -
7 is known diffusivity —_ | i
= L X) i ' - ' o 1 i) (3 | " v y
=cO(0xx: ) isa known dlverggnce fre_e dynamics model F(u) := FitM (gyp) + Z 5 T, =(u®, pGtD) + 7H(p), AL v S
¥ e C2([0,1] x &) is an unknown potential function — At »
i . | 5 -
The state vector evolves over time ¢ € [0, 1] with initial distribution P, which where T, = are entropic OT costs, due to:
yields path law P. The following holds. 0l
Observation space )V : function ¢ : X — Y is the observation function o} i RIS R RS S (Rti“ - "Rt%) A B ATATARAER SO (') 260 460 6 260 460
o . N (ii) If F admits a minimizer u* € P(X)T, then a minimizer R* for F is built iteration lteration
T observation times with 0< <. <t <1and N/ i.i.d. samples: s
N7 R'()= [ W=(|ay,...,2r)dRyr, _r(21,...,27), s = 2 B E=a ki
Wijtiz ~ 9Py ] X ' ;
. o where W=7 (-|x1,...,z7) is the law of W=T" conditioned on passing through (left) Velocity of one particle at end of optimization. (right) Population
Empirical distributions: . T1,...,27 at times t1 ..., tL, respectively and Rz iz is the composition velocity at start of optimization, showing exponential convergence.
Y A N i 5 of the optimal transport plans ~; that minimize Tn,E(M*(i), p*Et1) ), for
P; 2321 YT i€ [T —1].
Problem: Given (pf,...,p%) recover P App“CathnS (fUture WOrk)
I can be optimized via mean-field Langevin dynamics [3]. . . . . L
. i e Single-cell genomic data analysis - learning the distribution of cellular
Key assumption is observability: on traiector
Definition: Assume W is unknown but restricted to class Cu. We say the Jene expression trajectories. |
tuple (g’ E7 C\I/) IS C\If -ensemble observable |f, given qg, E’ T, and all marginals : . ' ® Learnlng SUbJeCt traJeCtory distributions from Independent Surveys at
9:P;, the marginals P, are uniquely determined for all ¢ € [0, 1] Algorithm 1 PO-MFL: framework for latent trajectory inference various times without the need to maintain a consistent panel of
Require: Collection of observations (41, ..., 0¢), collection of T' time samples respondents
Fit function: (tT,...,tt), velocity dynamics Z, number of iterations for MFL dynamics _ P - _ .
N, number of particles m, entropic OT parameter \ e Private synthetic trajectory generation.
1: Initialize m particles for each time: (Mq,...,mp) € X™*T
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Fit (QuRtlTa “e agnRtg) =% ZAtiDF (guRt;’"aPi ); 2: for N iterations do
i1 3 foric[T—1] do References
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where H(.|-) is KL divergence and H(-)is negative entropy 6: ~; < Sinkhorn(r;, Mjy1, Ci, A - At;) The Annals of Applied Probability.
7 end for : : : : . .
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